e-ISSN: 2722-7979 Vol. 1 No. 1, Hal 1 - 10

Analisis Upaya Menurunkan Cacat Produk *Crank Case* LH pada Proses *Die Casting* dengan Metode PDCA dan FMEA di PT. Suzuki Indo Mobil/Motor

Dimas Raya¹, Agustinus Yunan^{*2}, Rifda Ilahy Rosihan³

Program Studi Teknik Industri, Fakultas Teknik, Universitas Bhayangkara Jakarta Raya e-mail: \(^1\)dimasraya240395@gmail.com, \(^2\)agustinus.yunan@dsn.ubharajaya.ac.id, \(^3\)rifda.ilahy@dsn.ubharajaya.ac.id

ABSTRACT

PT. Suzuki Indo Mobil / Motorcycle is the largest motorcycle manufacturing industry in Indonesia today. Die Casting is one of the departments that is important in the manufacture of motorcycle parts. In the Die Cating section, there are a number of types of defects that exceed the company tolerance standards. During the February to July period, 228 pcs of defect products were found. For this reason, it is necessary to determine the most dominant factor in the occurrence of defects and determine the proposed improvement of the root problem. PDCA is a useful tool for continuous improvement and FMEA or Failure Mode Analysis is a tool that is often used in quality improvement methods. FMEA serves to determine the consequences of failure associated with failure in the Crank Case LH. There are three types of defects found, namely Chipped, Cracked, Wrinkled. With pareto diagram, it is known that there are three types of defect Crank Case LH which are the most dominant, namely: 9.9% chipped, Crack 6.75%, Wrinkles 4.72%, aluminum & mold is too low, engine filling time is too long, Crank Case LH Cracks the surface of the rough molding machine, engine pressure is too large, Crank Case LH Machine wrinkles Less pressure. Improve made is to make a standard number of Crank Case LH setting parameters of the engine and required SOP.

Keywords: Defect, Quality Control, PDCA, FMEA

ABSTRAK

PT. Suzuki Indo Mobil / Motor adalah industri manufaktur sepeda motor terbesar di Indonesia saat ini. Die Casting adalah salah satu departemen yang penting dalam pembuatan suku cadang sepeda motor. Di bagian Die Cating, ada sejumlah jenis cacat yang melebihi standar toleransi perusahaan. Selama periode Februari hingga Juli, 228 pcs produk cacat ditemukan. Untuk alasan ini, perlu untuk menentukan faktor yang paling dominan dalam terjadinya cacat dan menentukan perbaikan yang diusulkan untuk masalah akar. PDCA adalah alat yang berguna untuk peningkatan berkelanjutan dan FMEA atau Failure Mode Analysis adalah alat yang sering digunakan dalam metode peningkatan kualitas. FMEA berfungsi untuk menentukan konsekuensi dari kegagalan yang terkait dengan kegagalan dalam Crank Case LH. Ada tiga jenis cacat yang ditemukan, yaitu Chipped, Cracked, Wrinkled. Dengan diagram pareto, diketahui bahwa ada tiga jenis cacat Crank Case LH yang paling dominan, yaitu: 9,9% terkelupas, Retak 6,75%, Keriput 4,72%. aluminium & cetakan terlalu rendah, waktu pengisian mesin terlalu lama, Crank Case LH Memecah permukaan mesin cetak kasar, tekanan mesin terlalu besar, Crank Case LH Machine keriput Lebih sedikit tekanan. Peningkatan yang dilakukan adalah dengan membuat sejumlah standar parameter pengaturan Crank Case LH dari engine dan SOP yang diperlukan.

Kata Kunci: Defect, Quality Control, PDCA, FMEA

PENDAHULUAN

Industri manufaktur sepeda motor merupakan perusahaan terbesar Indonesia saat ini. Die Casting merupakan salah satu dapartemen yang berperan penting dalem pembuatan part sepeda motor. Industri manufaktur sepeda motor di Indonesia terus berkembang sejalan dengan kebutuhan masyarakat dan jumlah penduduk yang cukup besar, sehingga profit yang diperoleh sangat menjanjikan, dan terjadi persaingan yang ketat di dalam industri manufaktur sepeda motor. Industri tersebut, selain memenuhi kebutuhan pasar lokal, sekarang ini telah mencapai pasar internasional.

PDCA merupakan siklus umpan balik terus menerus di mana sistem, proses atau individu melaksanakan suatu proses yang terencana, dievaluasi, kemudian mendapatkan umpan balik, melakukan perbaikan dan kembali pada perencanaan yang secara siklus berlangsung terus menerus melakukan perbaikan. Selain PDCA metode pengendalian kualitas itu ada beberapa macam yaitu penulis memilih FMEA sebagai perbandingan terhadap metode PDCA.

FMEA merupakan sebuah alat yang digunakan untuk mengidentifikasi dan menilai resiko yang berhubungan dengan potensial kegagalan.

Contoh produk seperti Crank Case LH. Masalah yang terjadi pada Die Casting ini yaitu sering terjadi cacat pada produk Crank Case LH sedangkan penyebab dari kecacatan tersebut belum diketahui. Karena tuntutan kualitas yang sangat menentukan eksistensi produk maka penyimpangan terhadap produk cacat dihasilkan harus dihilangkan vang semaksimal mungkin. Maka dari itu penulis berusaha mencari pemecahan masalah tersebut dengan menggunakan metode PDCA dan FMEA. Data cacat pada produk tersebut antara lain dapat dilihat di bawah ini

Tabel 1 Jumlah Cacat *Crank Case* LH / Jenis Cacat *Crank Case* LH dan angka Defect kecacatan *Crank Case* LH bulan Febuari-Juli

						20	10							
						Bu	bn .							
Jenis Defect	18-	Feb	18	Mar	18	Ap	18	Mei	18	Juni	18	Jul .	Total	NG (%)
	Pes	Defect	Pcs	Defect	Pcs	Defect	Pos	Defect	Pcs	Defect	Pos	Defect		
Crank Case LH Gompal	28	13.65	16	10.88	14	8.18	18	6.97	15	8.72	16	12.69	107	9,9
Crank Case LH Retak	10	4.87	14	9.52	10	5.84	15	5.81	14	8.13	8	6.34	71	6.75
Crank Case LH Kriput	1	3.41	10	6.8	1	4.09	11	4.26	10	5.81	5	3.96	50	4.72
Total Defect	45	21,95	4)	27,21	31	18,11	44	17	39	22,67	29	23	228	
Total Produk	21	5	1	47	1	11	2:	58	1	12	1	26	1,079	
Target Perusahaan							Ma	2%						

Sumber: Data Perusahaan (2018)

Berdasarkan pada table di atas dapat dilihat bahwa telah terjadi produk cacat pada Crank Case LH, selama 6 bulan dari Febuari 2018 sampai dengan bulan Juli 2018. Meningkatnya produk cacat terlihat pada jenis cacat Crank Case LH Gompal dengan total 107 unit dengan total presentase 10,18 %. Crank Case LH retak dengan total 71 unit dengan total presentasi 6,75%. Crank Case LH Keriput dengan total 50 unit dengan total presentasi 4,72,hal ini melebihi target yang telah ditetapkan perusahaan yakni sebesar 2 %. Untuk mengurangi tingkat hasil kecacatan suatu produk maka penulis menggunakan metode PDCA (Plan Do Check Action) dan FMEA (Failure Mode Effect Analysis)

1.1 Rumusan Masalah

Berdasarkan latar belakang dan identifikasi masalah yang telah diuraikan, maka rumusan masalah dalam penelitian ini adalah :

1. Faktor – faktor apa saja yang menyebabkan terjadinya produk

- cacat / NG (not good) pada produk Crank Case LH?
- 2. Bagaimana solusi perbaikan ketidak sesuaian produk cacat yang dapat di usulkan untuk menurunkan produk cacat / NG (not good) tersebut pada Crank Case LH?

1.2 Tujuan Penelitian

Adapun tujuan yang hendak dicapai dari sebuah penelitian ini adalah sebagai berikut :

- Menentukan akar masalah dominan penyebab produk cacat / NG (not good) pada produk Crank Case LH
- Menentukan usulan pengendalian kualitas produk Crank Case LH dengan menggunakan metode PDCA dan FMEA

1.3 Definisi Kualitas

Berbagai pandangan bermunculan mengenai apa definisi tentang "kualitas" pemikiran dasarnya saat ini konsumen akan mencari dan membeli barang dan jasa yang berkualitas entah itu konsumen perorangan, organisasi swasta atau organisasi pemerintah. Ketika ingin membeli barang dan jasa tersebut, konsumen datang dengan membawa tiga aspek yakni kebutuhan, ekspentasi dan harapan. Sebelum kita membahas definisi dari "kualitas" terlebih dahulu harus dikupas makna dari ketiga aspek tersebut.

1.4 Tujuan Pengendalian Kualitas

Dukungan manajemen, karyawan, dan pemerintah untuk perbaikan kualitas adalah penting untuk kompetisi yang efektif di pasar global. Untuk menjaga konsistensi kualitas produk dan jasa yang dihasilkan dan sesuai dengan tuntutan kebutuhan pasar, perlu dilakukan pengendalian kualitas (quality control) atas aktivitas proses yang dijalani.

1.5 Pengertian Produk Cacat

Produk cacat merupakan produk gagal yang secara teknis atau ekonomis masih dapat diperbaiki menjadi produk yang sesuai dengan standar mutu yang ditetapkan tetapi membutuhkan biaya tambahan. Dalam proses produksi, produk cacat ini dapat diakibatkan oleh dua hal, yaitu: disebabkan oleh spesifikasi pemesan (abnormal) dan disebabkan oleh faktor internal (normal).

1.6 PDCA (*Plan Do Check Action*)

Menurut (Zullian yamit, 2013) pola PDCA dikenal sebagai "siklus shewart" karena pertama kali dikemukakan oleh walter shewat beberapa puluh tahun lalu. perkembangannya Namum dalam metodologi analisa PDCA lebih sering disebut "siklus deming" . hal ini karena orang deming adalah memperluas mempopulerkan dan penerapannya. Dengan nama apa pun itu disebut PDCA adalah alat bermanfaat untuk melakuan perbaikan secara terus menerus (continuous improvement) tanpa berhenti. (Edward deming), memopulerkan konsep PDCA (Plan, Do, Check, Act) sebagai metode ilmiah dalam pengelolaan (manajemen) suatu proses bisnis. PDCA meliputi empat kegiatan, yaitu percencanaan (plan), eksekusi (do), pemeriksaan (check), dan tindakan koreksi atau perbaikan (act).

- 1. menentukan tujuan dan sasaran (*Plan*)
- 2. melaksanakan perkerjaan (*Do*)
- 3. Melaksanakan Evaluasi (*Check*)
- 4. Melaksanakan Action

1.7 FMEA (Failure Mode Effect Analysis)

Suatu prosedur untuk terstruktur untuk mengidentifikasi dan mencegah sebanyak mungkin mode kegagalan. Suatu mode kegagalan adalah apa aja yang termasuk dalam kecacatan, kondisi diluar spesifikasi atau perubahan dalam produk yang menyebabkan terganggunya fugsi dari produk. tahap-tahap menerapkan FMEA adalah sebagai berikut:

- 1. Deskripsi dan tujuan
- 2. Mengidentifikasi modus kegagalan pontesial
- 3. Menentukan rating keparahan (severity)
- 4. Menentukan rating kejadian (occurrence)
- 5. Indetifikasi tingkat deteksi (*detection*)
- 6. Menghitung *Risk Priority Number* (RPN)
- 1.8 Tujuh Alat Kualitas (*Seven Tools*)
 Berikut ini adalah tujuh *tools*pengukuran kualitas:
 - 1. Flow Chart
 - 2. Diagram Sebab Akibat (Fishbone)
 - 3. Check Sheet
 - 4. Pareto Chart
 - 5. Histogram
 - 6. Scatter Diagram
 - 7. Control Chart

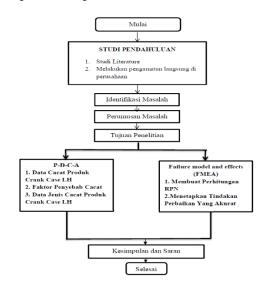
METODE PENELITIAN

Penelitian ini dilakukan adalah analisis penegndalian kualiatas pada proses produksi *Crank Case LH* dan produk lainnya dengan metode PDCA dan FMEA di PT Suzuki Indo Motor.

Dalam penyelesaian skripsi ini penulis menggunakan metode kualitatif dan kuantitatif sehingga mendapatkan data-data berupa angka mengenai jumlah produk cacat dalam suatu proses produksi. Adapun data-data tersebut di peroleh dari department QC dan depaterment lainya yang berkaitan dengan penelitian ini Metode pengamatan merupakan suatu serangkaian kegiatan yang bertujuan

untuk mengetahui situasi atau kondis lingkungan

Metode Kualitatif merupakan analisis yang memberikan gambaran umun perusahaan untuk mengevaluasi dan menilai program-program pengendalian kualitas yang ditinjau dari penerapan-penerapan unsur dan pendukung program dari penegendalian kualitas. Metode kuatitatif yaitu analisis yang berdasarkan dari Data yang dapat dianalisis dengan teknik analisis kuantitatif adapun datadata tersebut meliputi data produk cacat periode Febuari hingga Juli 2018


Setelah data terkumpul dan diidentifikasi maka selanjutnya penulis mengelolah data tersebut sesuia dengan tujuan dan pemecahan masalah. Adapun langkah-langkah dalam pengolahan data adalah sebagai berikut:

- Identifikasi masalah bertujuan untuk mengetahui seberapa besar produk yang cacat selama beberapa bulan terakhir. Penulis mengindentifikasi masalah ini ke dalam bentuk check sheet, kemudian di gambarkan dengan memakai diagram paretto
- 2. Menentukan faktor utama terjadinya produk yang cacat dengan cara menganalisa sebab akibat. Berisi tentang analisa timbulnya suatu akibat, dan mencari faktor-faktor penyebab terjadinya produk yang cacat, penulis menggambarkan diagram dengan menggunakan diagram fishbone
- 3. Melakukan uji coba perbaikan lingkungan kerja dan langkahlangkah proses pembuatan produk *Crank Case LH* dan produk lainnya yang akan diuji coba. Tujuannya untuk mengetahui apakah masih ada masalah atau tidak didalam proses produksi

- 4. Memeriksa hasil perbaikan, berisi tentang penulis memeriksa atau mengevaluasi hasil dari perbaikan
- Standarisasi hasil, setelah memeriksa hasil dari tes uji coba penulis melakukan standarisasi agar tidak terjadi masalah atau produk yang cacat pada saat proses produksi
- Setelah melakukan standarisasi, penulis melakukan implementasi secara berkesinambungan dan membeikan ususlan kepada perusahaan

2.1 Flow Chart Penelitian

Flow Chart pada penelitian ini dapat dilihat pada Gambar 1.

Sumber: Pengolahan Data (2019)

Gambar 1. Flow chart Penelitian

HASIL DAN PEMBAHASAN

3.1 Pengumpulan Data

Tabel 2 merupakan data produk cacat bulan Februari sampai dengan Juli 2018

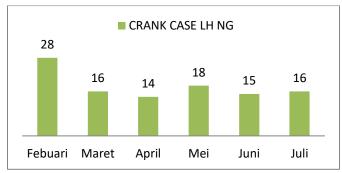
Tabel 2 Data Produk Cacat Febuari hingga Juli 2018

						Bu	an							
Komponen	18-	Feb	18	Mar	18	Ap	18	Mei	18	Juni	18	Jul	Total	NG(%
	Po	De fect	Pts	Defect	Pts	Defect	Pts	Defect	Pcs	Defect	Pts	Defect		
Cranti: Case LH Gompal	28	13.65	16	10.88	14	818	18	697	15	8.72	16	12.69	107	10,18
Cranti: Case LH Retnix	10	4.87	14	9.52	10	5.84	15	5.81	14	8.13	8	634	1	6,75
Crarti Case LH Kripat	7	3.41	10	6.8	7	4.09	11	426	10	5.81	5	3.96	50	4,72
Total Defect	45	21,95	40	7,1	31	18,11	44	17	39	22,67	29	23	107	228
Total Produk	2	05	1	47	1	71	2	58	1	72	1	26	1079	
Target Penashaan							Me	1.2%						

Sumber: Data Perusahaan (2018)

3.2 Menentukan Tujuan dan Sasaran (*Plan*)

Dalam menentukan tujuan dan sasaran. Agar mendapatkan data penyimpangan atau kondisi yang tidak baik, yang berhubungan dengan akar permasalahan


Tabel 3 *Check Sheet* Data Problem Kualitas Febuari - Juli 2018

	1 Couan	i = Juli 20	10			
					is Proble	
No	Tgl/Bln/Thn	Jumlah	Total	Crank	Cran	Cran
		Proble	Proses	Case	k	k
		m	Perbaik	LH	Case	Case
			a	Gomp	LH	LH
				al	Reta	Keri
					k	put
1	18-31/1/2018	16	55	11	4	3
2	1-9/2/2018	15	53	9	3	2
3	10-18/2/2018	14	52	8	3	2
	Total	45	160	28	10	7
4	18-28/2/2018	14	36	6	5	4
5	1-9/3/2018	13	36	5	5	3
6	10-18/3/2018	13	35	5	4	3
	Total	40	107	16	14	10
7	18-31/3/2018	11	47	5	4	3
8	1-9/4/2018	10	47	5	3	2
9	10-18/4/2018	10	46	4	3	2
	Total	31	140	14	10	7
10	18-30/4/2018	15	72	6	5	4
11	1-9/5/2018	15	71	6	5	4
12	10-18/5/2018	14	71	6	5	3
	Total	44	214	18	15	11
13	18-31/5/2018	13	45	5	5	4
14	1-9/6/2018	13	44	5	5	4
15	10-18/6/2018	13	44	5	4	3
	Total	39	133	15	14	10
16	18-30/6/2018	10	33	6	3	2

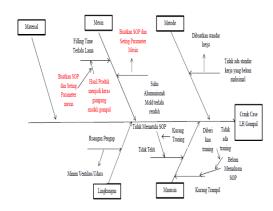
17	1-9/7/2018	10	32	5	3	2
18	10-18/7/2018	9	32	5	2	1
	Total	29	97	16	8	5

Sumber: Data Perusahaan (2018)

Gambar Diagram Produk *Crank Case* dapat dilihat pada Gambar 2

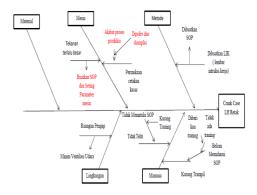
Sumber: Pengolahan Data (2019)

Gambar 2 Diagram Produk *Crank Case* LH yang Cacat

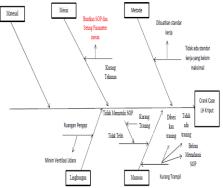

Tabel 4 Data Persentase Jumlah *Defect* pada *Crank* Case LH periode Febuari – Juli 2018

jenis cacat	Target Produksi (6bulan)	kegagalan (defect)	Total (defect)	%	kumulatif
Crank Case LH gompal	1079	107	228	47%	47
Crank Case LH retak	1079	71	228	31%	78
Crank Case LH kriput	1079	50	228	22%	100

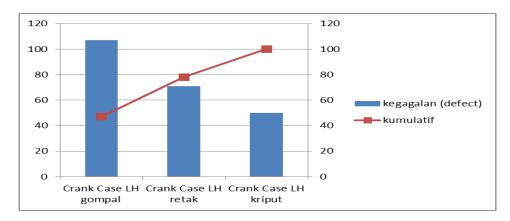
Gambar untuk *Pareto chart* pada Produk *crank case* dapat dilihat pada Gambar 3


3.3 Diagram Sebab Akibat

Setelah membuat *pareto chart* maka Langkah selanjutnya adalah membuat diagram sebab akibat atau yang biasa dikenal *fishbone diagram* untuk Produk *crank case*. Gambar untuk diagram *Fishbone* dapat dilihat pada Gambar 4, 5, dan 6.


Sumber: Pengolahan Data (2019)

Gambar 4.Diagram *Fishbone* Produk *Crank Case*


Sumber: Pengolahan Data (2019)

Gambar 5.Diagram *Fishbone* Produk *Crank Case*

Sumber: Pengolahan Data (2019)

Gambar 6.Diagram Fishbone Produk Crank
Case

Sumber: Pengolahan Data (2019)

Gambar 3. Pareto Chart Produk Crank Case LH yang cacat

Tabel 5, 6 dan 7 merupakan tabel RPN untuk produk *crank case*

Tabel 5. Prioritas Pemecahan Masalah (*Risk Priority Number*)

Jenis	Faktor	Penyebab		Severity		Оссигтевсе		Detection	
Cacat	Penyebab	Kegagalan	Nilai	Keterangan	Nilai	Keterangan	Nilai	Keterangan	RPN
	Metode Kerja	Dibuatkan standar kerja	3	Sedikat berpengaruh pada kecacatan Crank Case LH Gompal	3	Sangat kecil terjadi kegagalan kecacatan Crank Case LH Gompal	3	Pengecekan memiliki kemungkinan tinggi	27
	Mesin	Buatkan SOP dan Seting Parameter Mesin	5		5		4		
Crank	Mesin	Hasil Produk menjadi keras gampang madah gompal	5	Mengalami penurunan kerja secara fluktuatif	5	Jarang terjadi kegagalan pada kecacatan Crank Case LH Gompal	4	Mendeteksi penyebab mekanisme kegagalan	100
Case LH Gompal		Buatkan SOP dan Seting Parameter mesin	5		5		4		
	Mamisia	Belom Memahami SOP Tidak ada traning Diberikan traning Tidak mematuhi SOP	3 3 3 3	Sedikit berpengaruh pada kecacatan Crank Case LH Gompal	3 3 3 3	Sangat kecil terjadi kegagalan kecacatan Crank Case LH Gompal	3 3 3	Pengecekan memiliki kemungkinan tinggi	27
		Kurang traning	3	Cust Las Compos	3		3		
	Lingkungan	Minim ventilasi udara	2	Efek yang diabaikan pada kinerja sistem terhadap kecacatan	2	Sangat kecil terjadi kegagalan kecacatan Crank Case LH Gompal	3	Pengecekan memiliki kemungkinan tinggi	12

Sumber: Pengolahan Data (2019)

Tabel 6 Prioritas Pemecahan Masalah (*Risk Priority Number*)

Jenis	Faktor	Penyebab		Severity		Оссигтенсе		Detection	
Cacat	Penyebab	Kegagalan	Nilai	Keterangan	Nilii	Keterangan	Nilai	Keterangan	RP?
	Metode Kerja	Dibuatkan SOP	3	Sedikit berpengaruh pada kecacatan Crank Case LH Retak	3	Sangat kecil terjadi kegagalan kecacatan Crank Case LH Retak	3	Pengecekan memiliki kemungkinan tinggi	27
		Akibat proses produksi	5	Mengalami penurunan kerja	5	Jarang terjadi kegagalan	4	Mendeteksi penyebab mekanisme kegagalan	
	Mesin	Dipoles dan diamplas	5	secara fluktuatif	5	pada kecacatan Crank Case LH Retak	4		100
Crank		Buatkan SOP dan Seting Parameter mesin	5		5		4		
Case LH Retak		Belom Memahami SOP	3		3		3		
	Manusia	Tidak ada traning Diberikan traning	3	Sedikit berpengaruh pada	3	Sangat kecil terjadi kegagalan kecacatan	3	Pengecekan memiliki kemungkinan tinggi	27
		Tidak mematuhi SOP	3	kecacatan Crank Case LH Retak	3	Crank Case LH Retak	3	www.elwing.missi	
		Kurang traning	3	Cutt Lit Ittim	3	1	3		
	Lingkungan	Minim ventilasi udara	2	Efek yang diabaikan pada kinerja sistem terhadan kecacatan	2	Sangat kecil terjadi kegagalan kecacatan Crank Case LH Retak	3	Pengecekan memiliki kemungkinan tinggi	12

Sumber: Pengolahan Data (2019)

Tabel 7 Prioritas Pemecahan Masalah (*Risk Priority Number*)

Jenis	Faktor	Penyebab		Severity		Occurrence		Detection	
Cacat	Penyebab	Kegagalan	Nilai	Keterangan	Nilai	Keterangan	Nilai	Keterangan	RPN
	Metode Kerja	Dibuatkan standar kerja	3	Sedikit berpengaruh pada kecacatan Crank Case LH Retak	3	Sangat kecil terjadi kegagalan kecacatan Crank Case LH Retak	3	Pengecekan memiliki kemungkinan tinggi	27
	Mesin	Buatkan SOP dan Seting Parameter mesin	5	Mengalami penurunan kerja secara fluktuatif	5	Jarang terjadi kegagalan pada kecacatan Crank Case LH Keriput	4	Mendeteksi penyebab mekanisme kegagalan	100
Crank Case LH Keriput	Manusia	Belom Memahami SOP Tidak ada traning Diberikan traning Tidak mematuhi SOP Kurang traning	3 3 3 3	Sedikit berpengaruh pada kecacatan Crank Case LH Retak	3 3 3 3	Sangat kecil terjadi kegagalan kecacatan Crank Case LH Retak	3 3 3 3	Pengecekan memiliki kemungkinan tinggi	27
	Lingkungan	Minim ventilasi udara	2	Efek yang diabaikan pada kinerja sistem terhadap kecacatan	2	Sangat kecil terjadi kegagalan kecacatan Crank Case LH Gompal	3	Pengecekan memiliki kemungkinan tinggi	12

Sumber: Pengolahan Data (2019)

3.4 Menentukan dan Memperbaiki Penyebab dari Akar Permasalahan (Do)

Tabel 8 Tahapan Perbaikan Dari Segi Mesin

Jenis <i>Problem</i> /Cacat	September	Oktober	Total
Crank Case LH Gompal	8	7	15
Crank Case LH Retak	7	6	13

Crank Case	(5	11
I H Kerinut	O	3	11

Sumber: Pengolahan Data (2019)

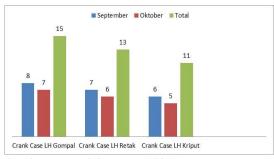
Tabel 8 Tahapan Perbaikan Dari Segi Mesin

Jenis	5W+1H	Deskripsi Tindakan (Mesin)
Tujuan Utama	What (Apa)	Suhu Alumunium& Mold terlalu rendah, Filling Time Terlalu Lama
Alasan	Why (Mengapa)	Buatkan SOP dan Seting Parameter Mesin, Hasil Produk menjadi keras gampang mudah gompal
Orang	Who (Siapa)	Operator
Tempat	Where (Dimana)	Departement Crank Case LH
Waktu	When (Kapan)	Febuari-Juli 2018
Metode	How (Bagaimana)	Dibuaatkan SOP dan seting parameter sebelum kerja dimulai
		agar produk yang kita buat sesuai standar

Sumber: Pengolahan Data (2019)

Tabel 9 Tahapan Perbaikan Dari Segi Mesin

Jenis	5W+1H	Deskripsi Tindakan (Mesin)
Tujuan Utama	What (Apa)	Permukaan cetakan kasar, Tekanan terlalu besar
Alasan	Why (Mengapa)	Akibat proses produksi harus Dipoles dan diamplas, Buatkan SOP dan Seting Parameter mesin
Orang	Who (Siapa)	Operator Die Casting
Tempat	Where (Dimana)	Dapartemen Die Casting
Waktu	When (Kapan)	Febuari-Juli 2018
Metode	How (Bagaimana)	Sesudah proses proses produksi cetakan mesin wajib dibersikan supaya pas produksi kembali tidak ada kotor di dalem cetakan dan operator sebelum ketja mengecek dan seting parameter mesin sesuai standar

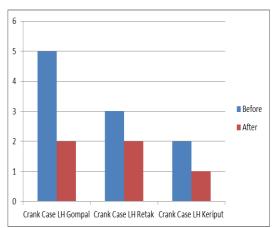

Sumber: Pengolahan Data (2019)

Tabel 10 Data Produk Cacat Setelah Perbaikan 2018

2010				
Jenis	5W+1H	Deskripsi Tindakan (Mesin)		
Tujuan Utama	What (Apa)	Kurang Tekanan		
Alasan	Why (Mengapa)	Buatkan SOP dan Seting Parameter mesin		
Orang	Who (Siapa)	Operator Die Casting		
Tempat	Where (Dimana)	Dapartemen Die Casting		
Waktu	When (Kapan)	Juli-Desember 2018		
Metode	How (Bagaimana)	Supaya operator melihat SOP yang telah ada dan seting parameter mesin sebelum dan sesudah kerja		

Sumber: Pengolahan Data (2019)

3.5 Memeriksa atau Mengevaluasi Aktivitas Perbaikan (*Check*)


Sumber: Pengolahan Data (2019)

Gambar 7 Data Diagram Produk Cacat

Tabel 11 Data Produk Cacat Crank Case LH

Jenis Problem/Cacat	Rata-rata sebelum/Unit per bulan	Jenis Problem/Cacat	Rata-rata sesudah/Unit per bulan
Crank Case LH Gompal	5	Crank Case LH Gompal	2
Crank Case LH Retak	3	Crank Case LH Retak	2
Crank Case LH Kriput	2	Crank Case LH Kriput	1

Sumber: Pengolahan Data (2019)

Sumber: Pengolahan Data (2019)

Gambar 8 Data diagram Perbandingan

3.6 Standarisasi Hasil (*Action*)

Tabel 12 Usulan Standarisasi Hasil

No	Faktor	Standarisasi	Point Penting
1	Mesin	Membuat SOP	Adanya SOP
		mesin dan	mesin dan
		seting	seting parameter
		parameter	mesin
		mesin dalam	berkurangnya
		kondisi yang	tingkatnya
		terbaik supaya	kerusakan pada
		hasil produksi	produksi yang
		sesuai	kita hasilkan .
		perencanaan	

Sumber: Pengolahan Data (2019)

KESIMPULAN

Kesimpulan

Berdasarkan hasil pengolahan data dan analisia, yang telah dilakukan penelitian dengan menggunakan metode PDCA dengan FMEA di PT. Suzuki Indo Mobil/Motor, maka penulisan dapat membuat sebuah kesimpulan antara lain yaitu:

- 1. Berdasarkan hasil analisa penelitian dengan menggunakan diagram sebab akibat tingkatan Risk Priorty Number tertinggi dapat diketahui akar penyebab masalah yaitu 1 faktor penyebab yang memungkinkan dapat menyebabkan cacat yaitu: mesin. adapun penyebabnya adalah: Faktor Mesin
 - a. Faktor ini disebabkan karena Suhu Alumunium & Mold terlalu rendah, maka dibuatkan SOP dan seting ulang parameter mesin
 - b. Faktor ini disebabkan karena filling time terlalu lama, maka dibuatkan SOP dan seting parameter mesin biar hasil produksi sesuai target yang kita inginkan

- Faktor ini disebabkan karena permukaan cetakan kasar hasil produksi menjadi NG, kami sarankan permukaan cetakan kasar harus dipoles dan diamplas
- d. Faktor ini disebabkan karena tekanan mesin terlalu besar mengakibatkan hasil produksi menjadi NG, maka dibuatkan SOP dan seting parameter mesin sesuai standar
- e. Faktor ini disebabkan karena kurang tekanan mengakibatkan hasil produksi kurang maksimal, maka dibuatkan SOP dan seting parameter mesin sesuai standar
- 2. Usulan perbaikan pengendalian kualitas terdapat di *How* dalam tahapan 5W+1H serta di dalam fase *Do* (Menentukan dan memperbaikan dari akar permasalahan)

Saran

Saran dari penelitian ini adalah Menjalankan dan menindak lanjutkan hasil dari stadarisasi yang dibuat oleh penulis kemudian menerapkan perbaikan secara berkesinambungan atau berkala dengan melakukan penerapan metode PDCA dan FMEA disetiap problem kualitas maupun tidak dan untuk penelitian selanjutnya dapat menggunakan analisis pengendalian kualitas dengan metode Six Sigma sebagai pembanding pengendalian kualitas

DAFTAR PUSTAKA

Ariani, D.W., 2004, Pengendalian Kualitas Statistik (Pendekatan Kuantitatif dalam Manajemen Kualitas). Andi: Yogyakarta.

Assauri, Sofjan, 2004, Manajemen Produksi dan Operasi Edisi Revisi 2004. Jakarta: Lembaga Penerbit FE-UI

- Ferdian, Anthony C., 2016, Implementasi Pengendalian Kualitas Dengan Menggunakan Pendekatan *Seven Tools* dan FMEA Pada CV. Madu Gong di Mojokerto, Skripsi, Fakultas Bisnis dan Ekonomika, Universitas Surabaya.
- Singh, A.P. 2013. Quality Improvement
 Using Statistical Process Control
 Tool in Glass Bottles
 Manufacturing Company.
 International Journal for Quality
 Research, Vol. 7, 107-126.
- Subali, S. B. W., dan Setyawan, A. B. 2016. The Implementation of Seven Quality Management Tools: Experiences From Three Enterprises in East Java, Indonesia. 13th Ubaya International Annual Symposium On Management.
- Varsha M. M., Dr. Vilas B. S.2014.
 Application of 7 Quality Control (7 QC) Tools for Continuous Improvement of Manufacturing Processes. International Journal of Engineering Research and General Science. Vol 2 (4): 2091-2730