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ABSTRACT 

In the context of rapid urbanization and growing e-commerce activity, optimizing warehouse location 

is a crucial factor in ensuring efficient logistics performance and maintaining service-level agreements 

(SLAs). This study addresses the operational challenges faced by a digital commerce platform in 

Indonesia, particularly its overburdened warehouse in Ciracas, East Jakarta. The company currently 

serves over 300 daily transactions from a limited 211 m² facility, leading to delayed deliveries and 

suboptimal coverage across 50 sub-districts in the Greater Jakarta area (Jabodetabek). To determine a 

more strategic location, this research applies a weighted Center of Gravity (CoG) method incorporating 

two key indicators: permanent urban population and per capita disposable monthly income. These 

socio-economic variables are normalized and used to compute the optimal warehouse coordinates. The 

resulting CoG, which is located near Halim Perdanakusuma in East Jakarta, offers balanced proximity 

to all target areas and improved accessibility via major transportation routes, including toll roads and 

the Halim airport. While the exact coordinate falls within a residential zone, the surrounding area 

presents viable alternatives for warehouse development. Relocating to this vicinity is expected to reduce 

delivery lead times, enhance SLA compliance, and support expanded inventory management. This study 

demonstrates the value of spatial analytics and composite weighting in facility location decisions and 

offers a replicable framework for logistics optimization in dense urban regions. 

Keywords: Warehouse Location Optimization, Center of Gravity Method, Spatial Logistics Planning, 

Urban Distribution Network, Weighted Demand Modeling 
 

 

INTRODUCTION 

In the current era of rapid e-commerce 

growth and urban consumer demand, logistics 

systems are under increasing pressure to 

provide faster and more reliable last-mile 

delivery services. For companies delivering 

Fast-Moving Consumer Goods (FMCG), fresh 

produce, electronics, and other household 

items, achieving timely and accurate deliveries 

is not only a service expectation but a 

competitive imperative. One of the most critical 

performance metrics in such environments is 

adherence to the Service Level Agreement 

(SLA), which, in this case, is defined as delivery 

completion within one working day. The 

studied company, a fast-growing digital 

commerce  platform  based  in  Indonesia, 

maintains a high SLA Key Performance 

Indicator (KPI) target of 98% for all 

transactions, reflecting its commitment to 

operational excellence. 

Despite this commitment, internal 

delivery data show inconsistencies in SLA 

performance. As shown in Figure 1, a 

significant portion (55%) of deliveries are 

completed at the upper limit of the 3-day SLA 

threshold, while only 9% are delivered within 

one day. This skewed distribution reveals that 

many deliveries are barely compliant, rather 

than proactively efficient. Additionally, 36% of 

deliveries occur within two days, which is less 

than ideal yet not entirely unsuccessful. Such 

patterns point to systemic inefficiencies, likely 

stemming from  poor  spatial  allocation  of 
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logistics assets, suboptimal warehouse 

location, or overburdened delivery hubs. 

Compounding this issue are observable data 

quality problems in operational dashboards, 

including missing or erroneous timestamps, 

inconsistent status logging, and manual entry 

errors. These deficiencies hinder real-time 

monitoring and root-cause analysis of SLA 

violations. 
 

Figure 1. Distribution of Delivery SLA Times 

The operational bottleneck is further 

exacerbated by capacity limitations. The 

company’s Ciracas warehouse, originally 

intended as a small-scale fulfillment center, 

now handles over 300 daily transactions despite 

having only 211 m² of operational space. This 

site, initially chosen without a formal spatial 

analysis, is currently misaligned with both 

transaction volume and geographic distribution. 

As the company expands its operations from 30 

to 50 sub-districts within the Greater Jakarta 

area (including Jakarta, Bogor, Depok, 

Tangerang, and Bekasi), as shown in Figure 2, 

having a high-capacity warehouse in a strategic 

location is essential. Company management has 

proposed relocating this warehouse to the area 

with a minimum space requirement of 1,000 m². 

This change aims to accommodate an increased 

diversity of SKUs and facilitate a shift from 

daily replenishment to a more efficient stocking 

system. 

To address these challenges, this paper 

applies the Center of Gravity (CoG) method, 

which is a quantitative locational 

optimization model, to identify an optimal 

warehouse location with minimum average 

delivery distance while preserving coverage 

of all designated sub-districts. By integrating 

spatial sales volume data, vehicle efficiency, 

and fuel cost metrics, the proposed model 

aims to enhance SLA compliance, reduce 

delivery lead time, and improve inventory 

responsiveness. This research contributes to 

the growing body of work on urban logistics 

and facility location optimization, particularly 

within high-density, high-growth markets. The 

findings are positioned to offer both practical 

value for decision-makers and methodological 

rigor for scholarly contribution. 
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Figure 2. Coverage Area for the Hub 

 

As shown in Table 1, the CoG method is 

widely used for determining optimal warehouse 

and distribution center locations to minimize 

transportation costs and improve operational 

efficiency (Hanif et al., 2021; Margana et al., 

2021; Sutaji & Hasibuan, 2021). However, the 

CoG method can produce biased results when 

data contamination or outliers are present, 

necessitating alternative approaches (Gao & 

Cui, 2021). To enhance decision-making, 

researchers often combine CoG with other 

methods such as the Analytical Hierarchy 

Process (AHP) to consider multiple criteria 

beyond just location (Sutaji & Hasibuan, 2021). 

The p-median method is another technique used 

alongside CoG to optimize warehouse locations 

(Hanif et al., 2021). Implementing these 

methods can lead to significant cost savings and 

improved distribution efficiency for businesses, 

as demonstrated in case studies of paper 

packaging products, utility stores, and a hijab- 

producing SME (Hanif et al., 2021; Margana et 

al., 2021; Sutaji & Hasibuan, 2021). 

Recent research has increasingly 

examined the nuanced relationship between 

population metrics and demand estimation 

across various domains. One study proposed a 

modeling approach to represent electric vehicle 

populations for optimizing charging schedules 

and enabling more effective demand response 

strategies (Kovacevic & Vasak, 2023). Another 

challenged the conventional assumption that 

population size is the dominant driver of mobile 

spectrum demand, using machine learning and 

crowdsourced data to construct more accurate 

predictive models (Parekh et al., 2023). From a 

theoretical perspective, the concept of a 

representative consumer in aggregate demand 

has been re-evaluated, with findings suggesting 

that its existence does not imply optimal income 

distribution (Jerison, 2023). In an applied 

context, machine learning and interpretability 

techniques have been used to explore nonlinear 

relationships between population inflow and 

related factors, revealing that boosting 

algorithms outperform other models and exhibit 

pronounced nonlinearities, threshold effects, 

and interaction effects (Hu et al., 2023). Finally, 

a spatial modeling framework for locating 

perishable goods fulfillment centers near 

consumers was developed using population 

density as a proxy for demand (Ekanayake et 

al., 2023). Collectively, these studies 

underscore the complexity of using population 

data as a surrogate for demand and highlight the 

importance of incorporating multi-dimensional 

modeling approaches and advanced analytical 

techniques in demand analysis. 
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Table 1. Related Works 

Author(s) 
Location Decision 

Techniques 
Weight Approximation 

Weight 

Normalization 

(Hanif et al., 2021) Center of Gravity 

(CoG) Method 

Weekly demand or quantity of goods 

move from/to the store i. 
No 

(Margana et al., 

2021) 

Center of Gravity 

(CoG) Method 

Quantity of goods move from/to the 

store i. 

No 

(Sutaji & 

Hasibuan, 2021) 

Center of Gravity 

(CoG) Method 

Quantity of goods move from/to the 

store i. 

No 

(Ekanayake et al., 
2023) 

The Centrality and 
Borda Count 

Population density. No 

(Li et al., 2023) Center of Gravity 

(CoG) Method 

 Permanent urban population.  

 Floor area.  

No 

   Building energy consumption.   

  Building carbon emissions of province i  

(Yuan & Yuan, 

2023) 

Center of Gravity 

(CoG) Method 

Permanent urban population. No 

(Wu et al., 2022) Center of Gravity 

(CoG) Method 

 Permanent urban population.  
Per capita disposable monthly income 

of urban residents. 

Yes 

This Paper Center of Gravity 

(CoG) Method 

 Permanent urban population.  

Per capita disposable monthly income 

of urban residents. 

Yes 

More recent research explored the 

integration of Ward’s hierarchical clustering 

with K‑means to identify logistics hubs while 

accounting for transportation costs (Nurprihatin 

et al., 2023). That work underscored the value 

of multi-stage clustering when locating cost- 

efficient hubs, inspiring our adaptation of 

weighted CoG to better reflect urban 

complexity and demand heterogeneity. 

 

METHODS 

The methodological framework adopted 

in this study follows a structured, quantitative 

approach to determine the optimal warehouse 

location using the CoG method. The steps are 

designed to ensure spatial efficiency, data 

integrity, and managerial relevance in 

warehouse location planning, as illustrated in 

Figure 3. 

 

Step 1: Problem Identification 

The study begins by identifying operational 

inefficiencies in the existing warehouse 

network, particularly focusing on SLA 

violations, capacity limitations, and high last- 

mile delivery costs. These problems motivate 

the need for relocation and optimization of 

warehouse placement. 

 

Step 2: Define Coverage Area 

The intended service area is defined in terms of 

geographic scope, comprising 50 sub-districts 

across the Greater Jakarta region (Jabodetabek). 

This step includes boundary delimitation and 

area segmentation to ensure representativeness 

in the spatial analysis. 

 
Step 3: Data Collection 

Quantitative data are collected from BPS- 

Statistics Indonesia, including permanent urban 

population and per capita disposable monthly 

income of urban residents for each sub-district. 

Geographic coordinates (longitude and latitude) 

of demand points are obtained using Google 

Maps. 

 
Step 4: Weight Assignment 

Each sub-district is assigned a weight based on 

two indicators, such as permanent urban 

population and per capita disposable monthly 

income  of  urban  residents.  The  data  on 
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Location Mapping 

 

Weight Assignment 

 

 

 

 

Center of Gravity 

Calculation 

 

 

Area 

 

Data Collection 
 

Identification 

permanent urban population and per capita 

disposable monthly income of urban residents 

are normalized by Equations (1) (Wu et al., 

2022). 
 

𝑧′ = 
 𝑧𝑖 − 𝑧𝑚𝑖𝑛  

𝑖 𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛 

(1) 

where: 
𝑧′ 𝑖 : the indicator data after 

normalization. 

𝑧𝑖 : the indicator of location i (i = 1, 
2,...,n). 

𝑧𝑚𝑖𝑛 : the minimum value of the indicator 
of location i (i = 1, 2,...,n). 

𝑧𝑚𝑎𝑥 : the maximum value of the indicator 
of location i (i = 1, 2,...,n). 

This weighting ensures that high-demand 

areas exert a greater influence on the center of 

gravity calculation. 

Step 5: Center of Gravity Calculation 

Using the CoG formula, the weighted average 

coordinates are calculated using Equations (2) 

and (3) (Li et al., 2023). 

 

 
 

∑𝑛 𝑥𝑖𝑊𝑖 
𝑋 = 𝑖=1 

∑𝑛 𝑊𝑖 
𝑖=1 

(2) 

 ∑
𝑛 

1 𝑦𝑖𝑊𝑖 

𝑌 = 𝑖= 

∑𝑛 𝑊𝑖 𝑖=1 

(3) 

where: 
i : 1, 2,…,n. 

X : the longitude of the center of gravity. 

Y : the latitude of the center of gravity. 
xi : the longitude of the geographical 

center of gravity of location i. 
yi : the longitude of the geographical 

center of gravity of location i. 
Wi : the normalized weight, 

approximated by permanent urban 

population and per capita disposable 
monthly income of urban residents. 

 

This computation yields the optimal central 

location that minimizes the weighted average 

distance to all demand points. 

 

 
 

 

 

 

 

 
Figure 3. Research Flow Chart 
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Interpretation 
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Step 6: Location Mapping 

The resulting coordinates are plotted using 

Google Maps to verify their geographic 

feasibility. 

 

Step 7: Managerial Interpretation 

The spatial results are then analyzed from a 

strategic and operational standpoint. Factors 

such as warehouse operating costs, land 

availability, accessibility for inbound and 

outbound logistics, and alignment with 

company expansion goals are considered. 

 
Step 8: Final Recommendation 

Based on the spatial analysis and managerial 

review, a final recommendation is made 

regarding the proposed warehouse location. 

This recommendation balances quantitative 

optimization with practical feasibility, 

providing a robust basis for decision-making in 

strategic warehouse planning. 

 
RESULTS AND DISCUSSION 

This study extends the multi-stage 

clustering framework, where Ward’s method 

identifies cluster groupings followed by 

K‑means to finalize hub positions by shifting 

the analytical lens toward weighted spatial 

analytics (Rembulan & Nurprihatin, 2023). By 

emphasizing population and income 

distributions, the weighted CoG model in this 

paper offers a more nuanced resolution to 

last‑mile delivery challenges in dense urban 

settings, as shown in Table 2. 

Weight Assignment 

To capture a more accurate 

representation of demand across the 

Jabodetabek area, this study assigns weights to 

each sub-district using two socio-economic 

indicators: permanent urban population and per 

capita disposable monthly income. These two 

variables are normalized using the min-max 

normalization technique (Equation 1) to ensure 

comparability and avoid skewed influence due 

to differences in scale. 

The population variable reflects the 

potential market size or delivery volume, while 

the income variable serves as a proxy for 

purchasing power and order frequency. For 

instance, sub-districts in Jakarta Selatan (e.g., 

Jagakarsa, Pasar Minggu, and Kebayoran Baru) 

showed high weights due to the combination of 

large population and higher income levels. In 

contrast, some sub-districts in Bogor and 

Bekasi regencies had relatively lower weights 

due to lower income and population values. 

This dual-indicator weighting system is 

in line with recent literature (Wu et al., 2022; 

Yuan & Yuan, 2023), which suggests that using 

composite indicators improves the precision of 

spatial optimization models. The final weights 

are then computed as the average of the 

normalized population and income scores. 

These weights serve as the basis for subsequent 

CoG computation, ensuring that the spatial 

center reflects both volume and value 

dimensions of demand. 
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Table 2. Weight Assignment and CoG Calculation 

No District 
Municipality/ 

Regency 

Latitude 

(X) 

Longitude 

(Y) 

Population 

in 2024 

(People)a 

Per Capita Disposable 

Monthly Income of Urban 

Residents in 2024 (IDR)b 

Normalized 

Population 

Normalized 

Expenses 

Weight 

(W) 
(X)(W) (Y)(W) 

1 Gunung Putri Bogor Regency -6.42886 106.9241 296,424 1,321,439 0.42510 0.00000 0.212551 -1.36646 22.72684 

2 Cileungsi Bogor Regency -6.40597 106.9949 304,747 1,321,439 0.44184 0.00000 0.220919 -1.41520 23.63722 

3 Klapanunggal Bogor Regency -6.48766 106.9169 142,166 1,321,439 0.11492 0.00000 0.057459 -0.37277 6.14334 

4 Jonggol Bogor Regency -6.47649 107.0303 151,637 1,321,439 0.13396 0.00000 0.066981 -0.43380 7.169021 

5 Cilodong Depok Municipality -6.43698 106.8355 184,950 2,823,228 0.20095 0.76886 0.484903 -3.12131 51.80483 

6 Cinere Depok Municipality -6.33608 106.7883 100,988 2,823,228 0.03212 0.76886 0.400487 -2.53752 42.76731 

7 Beji Depok Municipality -6.37588 106.8237 170,627 2,823,228 0.17215 0.76886 0.470502 -2.99987 50.26080 

8 Sukmajaya Depok Municipality -6.38533 106.8473 255,723 2,823,228 0.34326 0.76886 0.556058 -3.55062 59.41335 

9 Cimanggis Depok Municipality -6.36445 106.8591 251,002 2,823,228 0.33377 0.76886 0.551312 -3.50880 58.91270 

10 Tapos Depok Municipality -6.40996 106.8768 278,704 2,823,228 0.38947 0.76886 0.579164 -3.71242 61.89917 

11 Pancoran Mas Depok Municipality -6.39716 106.8001 254,701 2,823,228 0.34121 0.76886 0.555031 -3.55062 59.27736 

12 Menteng Jakarta Pusat -6.19603 106.8331 85,016 2,443,794 0.00000 0.57460 0.287301 -1.78012 30.69324 

13 Senen Jakarta Pusat -6.19345 106.8503 119,388 2,443,794 0.06912 0.57460 0.321859 -1.99342 34.39070 

14 Johar Baru Jakarta Pusat -6.18305 106.8562 134,250 2,443,794 0.09900 0.57460 0.336801 -2.08246 35.98928 

15 Cempaka Putih Jakarta Pusat -6.18267 106.8680 95,404 2,443,794 0.02089 0.57460 0.297745 -1.84086 31.81941 

16 Kebayoran Baru Jakarta Selatan -6.24362 106.8001 148,241 3,274,714 0.12713 1.00000 0.563567 -3.51870 60.18900 

17 Cilandak Jakarta Selatan -6.28452 106.8001 220,968 3,274,714 0.27337 1.00000 0.636687 -4.00127 67.99825 

18 Mampang Prapatan Jakarta Selatan -6.25061 106.8208 152,437 3,274,714 0.13557 1.00000 0.567786 -3.54901 60.65131 

19 Pasar Minggu Jakarta Selatan -6.29398 106.8237 324,691 3,274,714 0.48194 1.00000 0.740971 -4.66366 79.15326 

20 Jagakarsa Jakarta Selatan -6.33491 106.8237 379,385 3,274,714 0.59192 1.00000 0.795961 -5.04234 85.02746 

21 Pancoran Jakarta Selatan -6.25230 106.8473 174,542 3,274,714 0.18002 1.00000 0.590010 -3.68892 63.04098 

22 Tebet Jakarta Selatan -6.23185 106.8473 231,318 3,274,714 0.29419 1.00000 0.647093 -4.03259 69.14015 

23 Setiabudi Jakarta Selatan -6.21956 106.8326 113,147 3,274,714 0.05657 1.00000 0.528283 -3.28569 56.43786 

24 Kebayoran Baru Jakarta Selatan -6.24362 106.8001 148,241 3,274,714 0.12713 1.00000 0.563567 -3.51870 60.18900 

25 Cakung Jakarta Timur -6.18262 106.9477 582,327 2,430,017 1.00000 0.56755 0.783774 -4.84578 83.82285 

26 Duren Sawit Jakarta Timur -6.22954 106.9182 445,443 2,430,017 0.72475 0.56755 0.646150 -4.02522 69.08520 
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27 Pulogadung Jakarta Timur -6.19360 106.8912 297,922 2,430,017 0.42811 0.56755 0.497831 -3.08337 53.21379 

28 Matraman Jakarta Timur -6.20328 106.8621 182,981 2,430,017 0.19699 0.56755 0.382269 -2.37132 40.85006 

29 Jatinegara Jakarta Timur -6.23070 106.8827 318,819 2,430,017 0.47013 0.56755 0.518841 -3.23274 55.45517 

30 Makasar Jakarta Timur -6.27119 106.8945 221,367 2,430,017 0.27418 0.56755 0.420862 -2.63931 44.98788 

31 Kramat Jati Jakarta Timur -6.28258 106.8591 317,427 2,430,017 0.46734 0.56755 0.517442 -3.25087 55.29337 

32 Cipayung Jakarta Timur -6.32725 106.9004 306,965 2,430,017 0.44630 0.56755 0.506923 -3.20743 54.19030 

33 Ciracas Jakarta Timur -6.32311 106.8709 320,779 2,430,017 0.47408 0.56755 0.520812 -3.29315 55.65964 

34 Pasar Rebo Jakarta Timur -6.32616 106.8562 236,387 2,430,017 0.30438 0.56755 0.435964 -2.75798 46.58542 

35 Pulogadung Jakarta Timur -6.19360 106.8912 297,922 2,430,017 0.42811 0.56755 0.497831 -3.08337 53.21379 

36 Kelapa Gading Jakarta Utara -6.16045 106.9055 144,911 3,045,738 0.12044 0.88277 0.501606 -3.09012 53.62439 

37 Tambun Utara Bekasi Regency -6.17876 107.0658 218,021 1,898,977 0.26745 0.29568 0.281563 -1.73971 30.14572 

38 Tambun Selatan Bekasi Regency -6.26119 107.0421 427,718 1,898,977 0.68911 0.29568 0.492393 -3.08297 52.70682 

39 Cikarang Barat Bekasi Regency -6.30048 107.0894 201,159 1,898,977 0.23354 0.29568 0.264609 -1.66717 28.33686 

40 Cikarang Selatan Bekasi Regency -6.32589 107.1256 165,881 1,898,977 0.16260 0.29568 0.229141 -1.44952 24.54683 

41 Setu Bekasi Regency -6.36343 107.0421 201,835 1,898,977 0.23490 0.29568 0.265289 -1.68815 28.39709 

42 Cibitung Bekasi Regency -6.23351 107.1071 258,282 1,898,977 0.34841 0.29568 0.322041 -2.00745 34.49290 

43 Jatisampurna Bekasi Municipality -6.36208 106.93 133,237 3,132,705 0.09696 0.92730 0.512130 -3.25821 54.76208 

44 Bantar Gebang Bekasi Municipality -6.33964 106.989 112,370 3,132,705 0.05500 0.92730 0.491150 -3.11372 52.54769 

45 Pondok Melati Bekasi Municipality -6.31092 106.93 132,448 3,132,705 0.09538 0.92730 0.511337 -3.22701 54.67726 

46 Mustikajaya Bekasi Municipality -6.30285 107.0185 239,726 3,132,705 0.31109 0.92730 0.619195 -3.90269 66.26532 

47 Jatiasih Bekasi Municipality -6.31013 106.9536 270,344 3,132,705 0.37266 0.92730 0.649979 -4.10145 69.51755 

48 Rawalumbu Bekasi Municipality -6.27789 107.0008 226,482 3,132,705 0.28446 0.92730 0.605879 -3.80364 64.82958 

49 Pondok Gede Bekasi Municipality -6.27002 106.93 253,935 3,132,705 0.33966 0.92730 0.633481 -3.97194 67.73811 

50 Bekasi Barat Bekasi Municipality -6.23820 106.9654 286,309 3,132,705 0.40476 0.92730 0.666030 -4.15483 71.24215 

51 Bekasi Utara Bekasi Municipality -6.20640 107.0008 349,943 3,132,705 0.53272 0.92730 0.730008 -4.53072 78.11144 
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No 

 

District 
Municipality/ 

Regency 

Latitude 

(X) 

Longitude 

(Y) 

Population 

in 2024 

(People)a 

Per Capita Disposable 

Monthly Income of Urban 

Residents in 2024 (IDR)b 

Normalized 

Population 

Normalized 

Expenses 

Weight 

(W) 

 

(X)(W) 

 

(Y)(W) 

52 Bekasi Timur Bekasi Municipality -6.23625 107.0244 261,795 3,132,705 0.35547 0.92730 0.641383 -3.99983 68.64367 

53 Bekasi Selatan Bekasi Municipality -6.25824 106.9772 214,400 3,132,705 0.26017 0.92730 0.593732 -3.71572 63.51580 

        Total 25.77264 -161.862 2755.191 

        
Longitude 

−161.862 

25.77264 
= −𝟔. 𝟐𝟖𝟎𝟑𝟗𝟖𝟏𝟔𝟔 

        
Latitude 

2755.191 

25.77264 
= 𝟏𝟎𝟔. 𝟗𝟎𝟑𝟔𝟖𝟏𝟓 

aSources: (BPS-Statistics Indonesia Bekasi Municipality, 2025; BPS-Statistics Indonesia Bekasi Regency, 2025; BPS-Statistics Indonesia Bogor Regency, 2025; BPS- 

Statistics Indonesia Depok Municipality, 2025; BPS-Statistics Indonesia Jakarta Pusat Municipality, 2025; BPS-Statistics Indonesia Jakarta Selatan Municipality, 

2025; BPS-Statistics Indonesia Jakarta Timur Municipality, 2025; BPS-Statistics Indonesia Jakarta Utara Municipality, 2025) 

bSources: (BPS-Statistics Indonesia Bekasi Municipality, 2024; BPS-Statistics Indonesia Bekasi Regency, 2024; BPS-Statistics Indonesia Bogor Regency, 2024; BPS- 
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Center of Gravity Calculation 

The next phase involves applying the 

weighted average CoG formula (Equations 2 

and 3) to compute the optimal latitude and 

longitude based on the assigned weights and 

sub-district coordinates. The total weighted 

summation for longitude and latitude was 

calculated by multiplying the geographic 

coordinates of each sub-district by their 

corresponding weight and then dividing by the 

sum of all weights. 

The final CoG coordinates are: 

Latitude: -6.280398166 
Longitude: 106.9036815 

These coordinates point to Halim 

Perdanakusuma, located in East Jakarta. The 

central location is strategically situated to 

minimize the average delivery distance across 

all 50 covered sub-districts. This result suggests 

a significant potential for improving delivery 

efficiency and achieving better SLA 

compliance, which is particularly in areas 

previously underserved due to the remote 

positioning of the current Ciracas warehouse. 

However, the exact point is the residential area, 

so the company needs to find another area 

around this point while considering the toll road 

and the Halim Perdanakusuma Airport, which is 

only around 8.6 km away as the inbound and 

outbound logistics route. 

Additionally, the weighted average 

method inherently prioritizes areas with high 

transaction potential, as evident from the 

dominant contribution of Jakarta Selatan and 

Jakarta Timur sub-districts in the CoG output. 

These results validate the methodological 

choice of weight-driven CoG over purely 

geometric or distance-based approaches. 

 
Location Mapping 

To verify the feasibility of the calculated 

CoG, the coordinates were plotted using Google 

Maps. The result places the optimal point within 

a residential zone in Halim Perdanakusuma. 

Although this zone may not be commercially 

viable for warehouse development, the 

surrounding area offers promising alternatives. 

Crucially, the proposed area benefits 

from direct access to the Halim Perdanakusuma 

Airport, which is a critical node for air cargo 

and is located near several toll road junctions 

1 

(e.g., JORR and Jakarta-Cikampek). This 

connectivity makes it highly favorable for 

inbound and outbound logistics operations. 

The spatial mapping also shows that the 

CoG is equidistant from high-demand clusters 

such as South Jakarta, East Jakarta, and the 

southern part of Bekasi Municipality. This 

balance supports cost-efficient delivery routes 

and resource allocation across the service area. 

Compared to the existing warehouse in Ciracas, 

the proposed location reduces geographic skew 

and enables a more centralized replenishment 

and distribution strategy. 

Overall, the mapping process confirms 

that while exact coordinates require practical 

adjustments due to zoning regulations, the 

general vicinity of the CoG represents a 

strategically sound and operationally 

advantageous area for warehouse relocation. 

 

CONCLUSIONS 

This study applied a quantitative CoG 

approach to optimize warehouse location for a 

growing e-commerce platform operating in 

Jabodetabek. By incorporating normalized 

population and income data, the model 

proposed the area of Halim Perdanakusuma, 

East Jakarta, as the optimal site. This location 

aligns strategically with both high-demand 

regions and transportation infrastructure. 

The relocation will address several 

operational pain points: warehouse capacity 

overflow, non-compliance with SLA targets, 

and delivery inefficiencies. While the CoG 

point itself is within a residential zone, adjacent 

areas offer practical alternatives for real estate 

acquisition. 

 
Managerial Implications 

The findings from this study offer 

significant practical value for logistics 

managers and strategic decision-makers in the 

fast-growing e-commerce and retail distribution 

sectors. The use of a CoG model that integrates 

both demographic (population) and economic 

(income) indicators provides a data-driven 

foundation for warehouse relocation decisions. 

For the case company, relocating the current 

warehouse from Ciracas to the vicinity of Halim 

Perdanakusuma has the potential to alleviate 

operational  bottlenecks,  particularly  in 



Penulis pertama, penulis kedua, penulis ketiga 
Submitted: dd/mm/yyyy; Revised: dd/mm/yyyy; Accepted: dd/mm/yyyy; Published: dd/mm/yyyy 

 

 

 

managing space constraints and improving 

adherence to the SLA. By situating the 

warehouse closer to the calculated CoG, 

logistics operations can benefit from reduced 

delivery lead times, more balanced coverage 

across the Jabodetabek region, and improved 

inventory responsiveness. Moreover, the 

proximity to toll roads and Halim 

Perdanakusuma Airport enhances accessibility 

for both inbound and outbound logistics, 

allowing for a more streamlined and scalable 

distribution network. From a managerial 

perspective, this study underscores the 

importance of aligning warehouse 

infrastructure with current and projected 

demand patterns using spatial analytics, rather 

than relying solely on legacy site decisions or 

ad-hoc heuristics. 

 

Recommendation 

While the CoG method demonstrated its 

utility in optimizing warehouse location using 

normalized socio-economic data, future 

research can further enhance the model’s 

robustness and practical relevance. First, 

incorporating real-time transactional data such 

as actual order volume and delivery frequency 

would provide a more granular and dynamic 

basis for weighting demand points. Second, a 

multi-criteria decision-making (MCDM) 

framework, such as the Analytical Hierarchy 

Process (AHP) or Technique for Order of 

Preference by Similarity to Ideal Solution 

(TOPSIS), could be integrated to consider 

qualitative and operational factors, including 

land cost, traffic congestion, zoning regulations, 

and environmental constraints. The AHP and 

TOPSIS were successfully applied in the 

supplier selection process within the 

construction sector to evaluate additional 

qualitative factors like land cost, zoning 

regulations, infrastructure quality, and strategic 

alignment (Nurprihatin et al., 2022). Third, 

simulation models or geographic information 

system (GIS)-based route optimization tools 

may be employed to evaluate the performance 

of multiple location scenarios under varying 

logistical conditions. Lastly, the adoption of 

machine learning models for forecasting future 

demand distribution, which incorporates trends 

in urbanization, infrastructure development, 

and consumer behavior, can help organizations 

remain agile in evolving market contexts. These 

avenues will not only extend the 

methodological contributions of this study but 

also provide deeper insights for urban logistics 

planning in other metropolitan regions. 
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