Sistem Pakar Pengklasifikasi Stadium Kanker Serviks Berbasis Mobile Menggunakan Metode Decision Tree

Authors

  • Maryam Maryam Universitas Muhammadiyah Surakarta
  • Huan Wendy Ariono Fakultas Komunikasi dan Informatika; Universitas Muhammadiyah Surakarta

DOI:

https://doi.org/10.31599/jki.v22i3.1368

Abstract

World Cancer Observation states that in Indonesia cervical cancer ranks second with a total of 9.2% of all cancer cases, which is cervical cancer which continues to increase in percentage every year due to the addition of new cases. It is important for the public to be aware of the symptoms that arise from cervical cancer. Lack of knowledge about cervical cancer from an early age increases the risk of death. This is because the patient knows cervical cancer when it is at an advanced stage. So it is important to know the symptoms of cervical cancer sufferers and their stage level in order to get the appropriate treatment. This study aims to create an expert system that can help the public know the classification of cervical cancer stages. The method used to develop an expert system is the Decision Tree method. One of the decision analysis techniques and classification methods in data mining. The classification process uses 200 records of cervical cancer patients with 12 symptoms as a reference. The Decision Tree method used has an accuracy value of 85.50%, recall 85.40%, and precision 86.74%. The expert system was developed using the flutter framework. The results of the study are in the form of an expert system mobile application that has been black box tested which is declared valid. This system can help the public know the diagnosis results from the symptoms experienced and the stage level accurately to apply the appropriate treatment.

Downloads

Download data is not yet available.

Author Biographies

Maryam Maryam, Universitas Muhammadiyah Surakarta

Fakultas Komunikasi dan Informatika; Universitas Muhammadiyah Surakarta

Huan Wendy Ariono, Fakultas Komunikasi dan Informatika; Universitas Muhammadiyah Surakarta

Fakultas Komunikasi dan Informatika; Universitas Muhammadiyah Surakarta

References

A.S., Rosa dan Shalahuddin, M. (2016). Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek. In Informatika Bandung.

Anggoro, D. A., & Aziz, N. C. (2021). Implementation of K-Nearest Neighbors Algorithm for Predicting Heart Disease Using Python Flask. Iraqi Journal of Science, 62(9), 3196–3219. https://doi.org/10.24996/ijs.2021.62.9.33

Bode, A. (2017). K-Nearest Neighbor Dengan Feature Selection Menggunakan Backward Elimination Untuk Prediksi Harga Komoditi Kopi Arabika. ILKOM Jurnal Ilmiah, 9(2), 188–195. https://doi.org/10.33096/ilkom.v9i2.139.188-195

Florin Gorunescu. (2011). Data Mining: Concepts, models and techniques (Softcover:). Springer-Verlag Berlin Heidelberg, Intelligent Systems References Library, Vol. 12ISBN: 978-3-642-19720-8. https://books.google.co.id/books?hl=id&lr=&id=yJvKY-sB6zkC&oi=fnd&pg=PP2&dq=Data+Mining:+Concepts,+models+and+techniques&ots=puMzz5wRyG&sig=uhlhI03jPCPmhBf8luoSla3V4zM&redir_esc=y#v=onepage&q=Data Mining%3A Concepts%2C models and techniques&f=false

Hong, X., Harris, C., Brown, M., & Chen, S. (2016). Backward Elimination Methods for Associative Memory Network Pruning. International Journal of Hybrid Intelligent Systems, 1(1–2), 90–98. https://doi.org/10.3233/his-2004-11-211

Kristian, M., Andryana, S., & Gunaryati, A. (2021). Diagnosa Penyakit Tumor Otak Menggunakan Metode Waterfall Dan Algoritma Depth First Search. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 6(1), 11–24. https://doi.org/10.29100/jipi.v6i1.1840

Maryam, Setiawan, N. A., & Wahyunggoro, O. (2017). A hybrid feature selection method using multiclass SVM for diagnosis of erythemato-squamous disease. AIP Conference Proceedings, 1867(August). https://doi.org/10.1063/1.4994451

Muchamad Rizqi, B. C. S. A. P. (2018). Literasi Dampak Penggunaan Smartphone Bagi Kehidupan Sosial di Desa Ngadirojo, Kabupaten Pacitan. Journal.Lspr.Edu. http://journal.lspr.edu/index.php/communicare/article/view/35

Pangestu, A., & Tanamal, R. (2020). Rancang Bangun Aplikasi Sistem Pakar Berbasis Mobile Untuk Mendiagnosis Penyakit Kulit Pada Kucing Persia. https://ejournal.ikado.ac.id/index.php/teknika/article/view/279

Patel, H., Sciences, P. P.-I. J. of C., & 2018, U. (2018). Study and analysis of decision tree based classification algorithms. Researchgate.Net, 6. https://doi.org/10.26438/ijcse/v6i10.7478

Pratama, E. B., & Hendini, A. (2019). Sistem Pakar Diagnosa Penyakit Kulit Pada Kucing Berbasis Web Menggunakan Metode Decision Tree. Sistemasi: Jurnal Sistem Informasi, 8(2), 254–264. https://doi.org/10.32520/STMSI.V8I2.459

Rio, S., Sri, E., & Suci, T. (2017). Persepsi tentang Kanker Serviks dan Upaya Prevensinya pada Perempuan yang Memiliki Keluarga dengan Riwayat Kanker. Jurnal Kesehatan Reproduksi, 4(3), 159–169.

Rodríguez, J. D., Pérez, A., & Lozano, J. A. (2010). Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3), 569–575. https://doi.org/10.1109/TPAMI.2009.187

Sagat, N. A., & Purnomo, A. S. (2021). Sistem Pakar Diagnosa penyakit Kanker Serviks Menggunakan Metode Forward Chaining. Jurnal Pendidikan Dan Teknologi Indonesia, 1(8), 329–337. https://doi.org/10.52436/1.jpti.73

Sharma, S. (2016). Cervical Cancer Stage Prediction using Decision Tree Approach of Machine Learning. International Journal of Advanced Research in Computer Science and Communication Engineering, 5(4), 345–348. https://doi.org/10.17148/IJARCCE.2016.5488

Sommerville, I. (2011). Software Engineering (9th ed.; Boston, Ed.). Massachusetts: Pearson Education.

Downloads

Published

2022-09-22

How to Cite

Maryam, M., & Ariono, H. W. . (2022). Sistem Pakar Pengklasifikasi Stadium Kanker Serviks Berbasis Mobile Menggunakan Metode Decision Tree. Jurnal Kajian Ilmiah, 22(3), 267–278. https://doi.org/10.31599/jki.v22i3.1368