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Abstract 

Indonesia is one of the countries with the highest number of tuberculosis (TB) patients in the world. This 

study discusses a mathematical model of TB disease spread by incorporating vaccination as a form of 

public health intervention using the SEIVR (Susceptible, Exposed, Infected, Vaccinated, Recovered) 

compartment model. The objectives of this study are to construct a mathematical model of TB spread, 

analyze the stability points of the model using the Next Generation Matrix (NGM) method, and 

evaluating the impact of vaccination through numerical simulation. The results of the analysis show that 

the basic reproduction number ℛ₀without vaccination is 1.31 > 1, so that the endemic equilibrium point 

is locally stable asymptotically. Meanwhile, with vaccination ℛ₀ drops to 0.91 < 1, making the disease-

free equilibrium point stable. The simulation results confirm that without vaccination, the number of 

active TB cases increases and the peak of infection is higher, while with vaccination, the number of 

active cases decreases significantly, the susceptible population decreases more rapidly, and the number 

of immune individuals increases. These findings confirm the importance of vaccination as an effective 

intervention in controlling the spread of TB in the community, as well as a strategy to reduce the basic 

reproduction number and prevent a spike in cases. 

Keyword: Tuberculosis, mathematical model, compartmental epidemiology, vaccination, Mataram, 

Next Generation Matrix. 

Abstrak 

Indonesia merupakan salah satu negara dengan jumlah penderita tuberkulosis (TB) tertinggi di dunia. 

Penelitian ini membahas suatu model matematika penyebaran penyakit TB dengan memasukkan 

vaksinasi sebagai bentuk intervensi kesehatan masyarakat, menggunakan model kompartemen SEIVR 

(Susceptible, Exposed, Infected, Vaccinated, Recovered). Tujuan penelitian ini adalah menyusun model 

matematika penyebaran TB, menganalisis titik-titik kestabilan model menggunakan metode Next 

Generation Matrix (NGM), serta mengevaluasi dampak vaksinasi melalui simulasi numerik. Hasil 

analisis menunjukkan bahwa bilangan reproduksi dasar ℛ₀ tanpa vaksinasi sebesar 1,31 > 1, sehingga 

titik keseimbangan endemik bersifat stabil asimtotik lokal. Sedangkan dengan vaksinasi ℛ₀ turun 

menjadi 0.91 < 1, menjadikan titik keseimbangan bebas penyakit stabil. Hasil simulasi menegaskan 

bahwa tanpa vaksinasi, jumlah kasus TB aktif meningkat dan puncak infeksi lebih tinggi, sementara 

dengan vaksinasi, jumlah kasus aktif menurun secara signifikan, populasi rentan berkurang lebih cepat, 

dan jumlah individu kebal meningkat. Temuan ini menegaskan pentingnya vaksinasi sebagai intervensi 

efektif dalam mengendalikan penyebaran TB di masyarakat, serta sebagai strategi untuk menurunkan 

bilangan reproduksi dasar dan mencegah lonjakan kasus. 

Kata kunci: Tuberkulosis, model matematika, epidemiologi kompartemen, vaksinasi, Mataram, Next 

Generation Matrix. 

PENDAHULUAN 

Perkembangan dan kemajuan dunia modern saat ini tidak bisa dipisahkan dari matematika 

(Ramdani, 2006). Hampir seluruh aktivitas manusia berkaitan dengan matematika, baik dalam ilmu 

pengetahuan, teknologi, maupun kehidupan sehari-hari (Salim Nahdi, 2019). Matematika digunakan 

sebagai alat penting di berbagai bidang, termasuk ilmu pengetahuan alam, rekayasa, medis, dan ilmu 

sosial seperti ekonomi dan psikologi (Sumarni, 2018). Proses pemodelan matematika memungkinkan 
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fenomena dunia nyata dipresentasikan dalam bentuk persamaan atau model matematis, sehingga 

pemahaman terhadap masalah nyata menjadi lebih tepat dan sistematis (Husna et al., 2024).  

Model matematika tidak hanya digunakan di bidang fisika atau ekonomi, tetapi juga diaplikasikan 

dalam bidang kesehatan, khususnya epidemiologi. Salah satu penyakit menular yang dapat dimodelkan 

secara matematis adalah tuberkulosis (TB) (Zahwa et al., 2022). TB disebabkan oleh bakteri 

Mycobacterium tuberculosis dan sebagian besar menyerang paru-paru, meskipun organ lain juga bisa 

terkena. Penyakit ini menjadi masalah serius karena memiliki angka kesakitan dan kematian yang tinggi 

(Aini et al., 2017). Gejala TB meliputi batuk berkepanjangan, sakit dada, sesak napas, demam, 

penurunan berat badan, dan kelelahan (Stewart, 1891). 

Menurut data World Health Organization (WHO) pada tahun 2014, Indonesia menempati 

peringkat keempat dunia dalam jumlah pasien TB setelah India, Cina, dan Afrika Selatan (Anugrah, 

2014). Penyebaran TB dipengaruhi oleh faktor lingkungan yang kurang sehat, tingginya kejadian gizi 

buruk, dan munculnya epidemik HIV/AIDS di beberapa wilayah (Hakim, 2019). Penyebaran yang cepat 

ini juga menyebabkan tingginya jumlah  latent infected (terinfeksi tapi belum menular) dan actively 

infected (terinfeksi dan menular) (Ulfasari Rafflesia, 2014). Kondisi ini menunjukkan perlunya strategi 

pengendalian yang efektif, baik melalui pengobatan maupun intervensi masyarakat (Irfandi et al., 2024). 

Pemodelan penyebaran TB telah banyak dilakukan dengan berbagai pendekatan. Jia et al., 

sebagaimana dikutip oleh Jia et al., (2011), membagi populasi TB dalam lima kelas dengan membagi 

kelas latent menjadi dua subpopulasi. Model ini memungkinkan analisis lebih rinci mengenai dinamika 

penyakit, termasuk kemungkinan sembuh tanpa menjadi aktif atau kembali menjadi rentan. Model-

model seperti ini menjadi dasar bagi pengembangan model yang lebih realistis untuk evaluasi intervensi 

di tingkat lokal (Agustanico Dwi Muryadi, 2017). 

Berbagai model matematika telah dikembangkan untuk menggambarkan dinamika penyebaran 

TB (Christyanti & Syahdan, 2019) dan mengevaluasi efektivitas strategi pengendaliannya (Castillo-

Chavez & Song, 2004). Salah satu rujukan penting dalam penelitian ini adalah artikel jurnal berjudul A 

Mathematical Model for Tuberculosis Infection Transmission Dynamics in the Presence of Testing and 

Therapy, Isolation and Treatment yang ditulis oleh Patrick Noah Okolo dkk. Dalam penelitian tersebut, 

penulis mengembangkan model matematika penyebaran TB dengan mempertimbangkan peran 

pengujian, terapi, isolasi, dan pengobatan sebagai faktor pengendalian utama. Model tersebut 

memberikan kerangka matematis yang kuat dalam menggambarkan dinamika TB secara realistis melalui 

pembagian populasi ke dalam beberapa kompartemen yang saling berinteraksi. 

Pemodelan penyakit menular tidak hanya terbatas pada TB, tetapi juga telah diterapkan pada 

penyakit lain. Dalam penelitian oleh Hattamurrahman dkk (2024), model matematika penyebaran 

COVID‑19 yang memuat kompartemen vaksinasi dianalisis secara matematis dan numerik untuk dua 

kondisi nilai bilangan reproduksi dasar, ℛ0 < 1 dan ℛ0 > 1. Simulasi numerik menunjukkan bahwa 

pemberian vaksinasi pada proporsi yang besar (misalnya 62% dari populasi) efektif menekan jumlah 

individu yang terinfeksi, sehingga memperkuat peran vaksinasi sebagai intervensi kesehatan masyarakat 

yang penting. 

Penelitian ini mengadopsi dan mengembangkan struktur dasar model matematika yang 

diperkenalkan oleh Patrick Noah Okolo dkk sebagai fondasi utama dalam membangun model 

penyebaran TB. Namun, berbeda dengan fokus penelitian sebelumnya yang menitikberatkan pada 

pengujian, terapi, dan isolasi, penelitian ini mengarahkan perhatian pada vaksinasi sebagai bentuk 

intervensi pencegahan. Dengan demikian, model yang digunakan merupakan pengembangan dari model 

kompartemen yang dirujuk, disesuaikan dengan konteks vaksinasi untuk melihat pengaruhnya terhadap 

dinamika penyebaran TB. 

Pemilihan rujukan model dari Patrick Noah Okolo dkk didasarkan pada kejelasan struktur 

matematis, kelengkapan analisis kestabilan, serta relevansinya dalam mengkaji intervensi kesehatan 

masyarakat. Model tersebut dinilai fleksibel untuk dimodifikasi sesuai dengan kebutuhan penelitian ini, 

khususnya dalam memasukkan kelas  yang telah menerima vaksin. Melalui pengembangan ini, 

diharapkan model yang dibangun tetap memiliki dasar teoritis yang kuat sekaligus relevan dengan 

kondisi epidemiologis yang dikaji. 

Berdasarkan latar belakang tersebut, penelitian ini bertujuan untuk mengkaji dinamika 

penyebaran TB di Kota Mataram menggunakan model matematika kompartemen yang dikembangkan 
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dari rujukan Patrick Noah Okolo dkk dengan memasukkan vaksinasi sebagai variabel utama 

pengendalian. Analisis dilakukan melalui penentuan bilangan reproduksi dasar menggunakan metode 

Next Generation Matrix serta kajian kestabilan titik kesetimbangan. Selain itu, simulasi numerik 

digunakan untuk menggambarkan dampak vaksinasi terhadap penurunan jumlah kasus TB secara 

kuantitatif. 

Dengan pendekatan ini, penelitian diharapkan dapat memberikan kontribusi ilmiah tidak hanya 

dalam pengembangan model matematika TB berbasis vaksinasi, tetapi juga dalam menyediakan dasar 

analitis bagi perumusan kebijakan kesehatan masyarakat yang lebih efektif, khususnya dalam konteks 

pengendalian TB di tingkat lokal. 

METODE PENELITIAN 

Penelitian ini menggunakan metode studi literatur yang dilakukan secara bertahap, mulai dari 

perumusan masalah hingga penarikan kesimpulan. Penyusunan model matematika merujuk pada model 

penyebaran tuberkulosis yang dikembangkan oleh Patrick Noah Okolo dkk, lalu disesuaikan dengan 

fokus penelitian ini dengan memasukkan vaksinasi sebagai upaya pencegahan. Model dibangun dalam 

bentuk sistem persamaan diferensial yang menggambarkan dinamika  rentan, terpapar, terinfeksi, 

divaksinasi, dan sembuh. Analisis dilakukan dengan menentukan bilangan reproduksi dasar 

menggunakan metode Next Generation Matrix serta mengkaji kestabilan titik kesetimbangan untuk 

melihat kondisi jangka panjang penyebaran penyakit. Selanjutnya, simulasi numerik digunakan untuk 

menggambarkan dinamika penyebaran TB di Kota Mataram dan menilai pengaruh vaksinasi terhadap 

penurunan jumlah kasus. 

HASIL DAN PEMBAHASAN 

1. Penyusunan Model 

Patrick Noah Okolo dkk mengembangkan suatu model epidemi deterministik dalam bentuk 

sistem persamaan diferensial biasa untuk menggambarkan dinamika penyebaran penyakit tuberkulosis 

(TB). Dalam model tersebut, populasi total pada waktu 𝑡 dinotasikan dengan 𝑁(𝑡), yang merupakan 

jumlah dalam seluruh kompartemen.  

Pada penelitian ini, model dasar tersebut dikembangkan dengan memasukkan vaksinasi sebagai 

bentuk intervensi pencegahan. Populasi dibagi ke dalam lima kompartemen utama, yaitu individu rentan 

(𝑆),  terpapar atau laten (𝐸),  terinfeksi (𝐼),  yang telah divaksinasi (𝑉), dan  yang pulih (𝑅).  rentan dapat 

memperoleh vaksin dengan laju gamma dan berpindah ke kelas V. Vaksinasi diasumsikan tidak 

memberikan perlindungan sempurna, sehingga  yang telah divaksin masih memiliki kemungkinan 

terinfeksi TB, namun dengan tingkat risiko yang lebih rendah dibandingkan  rentan yang tidak divaksin. 

Pengembangan model ini bertujuan untuk mengkaji pengaruh vaksinasi terhadap dinamika 

penyebaran TB serta mengidentifikasi parameter-parameter kunci yang berperan dalam menurunkan 

jumlah kasus TB aktif. Hubungan antar kompartemen dan mekanisme perpindahan  dalam model 

selanjutnya disajikan secara skematis dalam bentuk diagram kompartemen. Diagram tersebut menjadi 

dasar dalam penyusunan sistem persamaan diferensial biasa yang menggambarkan dinamika 

penyebaran TB dan disajikan pada bagian berikutnya. Secara skematis, pola penyebaran TB dengan 

vaksinasi disajikan pada gambar berikut. 
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Berdasarkan diagram pada Gambar 1, sistem persamaan diferensial biasa yang menggambarkan 

dinamika penyebaran tuberkulosis dalam model ini dapat dituliskan sebagai berikut. 
𝑑𝑆

𝑑𝑡
= Π𝑁 − 𝛽∗𝑆𝐼 − 𝜇𝑆  

𝑑𝐸

𝑑𝑡
= 𝛽∗𝑆𝐼 − (𝜇 + 𝜋)𝐸  

𝑑𝐼

𝑑𝑡
= 𝜋𝐸 − (𝜇 + 𝛿 + 𝜎 + 𝜂)𝐼  

𝑑𝑉

𝑑𝑡
= 𝜂𝐼 − (𝜇 + 𝛾)𝑉  

𝑑𝑅

𝑑𝑡
= 𝜎𝐼 + 𝛾𝑉 − 𝜇𝑅  

dengan 𝛽∗ =
𝛽

𝑁
  

untuk membuat proporsi dalam sistem persamaan (1) di atas, variabel (𝑆, 𝐸, 𝐼, 𝑉, 𝑅) dinyatakan dalam 

bentuk sebagai berikut. 

𝑠 =
𝑆

𝑁
, 𝑒 =

𝐸

𝑁
, 𝑖 =

𝐼

𝑁
, 𝑣 =

𝑉

𝑁
, 𝑟 =

𝑅

𝑁
 

Sehingga sistem persamaan (1) dapat ditulis ulang sebagai berikut. 
𝑑𝑠

𝑑𝑡
= Π− 𝛽𝑠𝑖 − 𝜇𝑠  

𝑑𝑒

𝑑𝑡
= 𝛽𝑠𝑖 − (𝜇 + 𝜋)𝑒  

𝑑𝑖

𝑑𝑡
= 𝜋𝑒 − (𝜇 + 𝛿 + 𝜎 + 𝜂)𝑖  

𝑑𝑣

𝑑𝑡
= 𝜂𝑖 − (𝜇 + 𝛾)𝑣  

𝑑𝑟

𝑑𝑡
= 𝜎𝑖 + 𝛾𝑣 − 𝜇𝑟  

Untuk seterusnya sistem persamaan (2) digunakan dalam analisis. Parameter yang digunakan dalam 

sistem persamaan (2) dijelaskan dalam Tabel 1 berikut. 

Tabel 1. Deskripsi Parameter 

Simbol Keterangan Satuan 

Π Laju kelahiran 1/waktu 

𝛽 Tingkat kontak efektif antara 𝑆 dan 𝐼 yang menyebabkan infeksi 1/waktu 

𝜇 Laju kematian alami 1/waktu 

𝜋 Laju perpindahan  dari terpapar (𝐸) menjadi terinfeksi (𝐼) 1/waktu 

S E 

V 

I R 
Π𝑁 

𝜇𝑆 

𝜇𝐸 

(𝜇 + 𝛿)𝐼 

𝜂𝐼 

𝜇𝑉 

𝜎𝐼 𝜇𝑅 𝛽𝑆𝐼 𝜋𝐸 

𝛾𝑉 

Gambar 1. Modifikasi model penyebaran Tuberkulosis dengan Vaksin 

(1) 

(2) 
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𝛿 Laju kematian akibat TB pada yang terinfeksi 1/waktu 

𝜎 Laju terinfeksi yang sembuh 1/waktu 

𝜂 Laju terinfeksi yang mendapat vaksinasi 1/waktu 

𝛾 Laju  yang divaksinasi menjadi sembuh 1/waktu 

2. Penentuan Titik Tetap 

Titik tetap dari sistem persamaan (2) diperoleh dengan menyelesaikan 
𝑑𝑠

𝑑𝑡
= 0,

𝑑𝑒

𝑑𝑡
= 0,

𝑑𝑖

𝑑𝑡
= 0,

𝑑𝑣

𝑑𝑡
= 0,

𝑑𝑟

𝑑𝑡
= 0 

Sehingga diperoleh sistem persamaan berikut. 

Π − 𝛽𝑠𝑖 − 𝜇𝑠 = 0  

𝛽𝑠𝑖 − (𝜇 + 𝜋)𝑒 = 0  

𝜋𝑒 − (𝜇 + 𝛿 + 𝜎 + 𝜂)𝑖 = 0  

𝜂𝑖 − (𝜇 + 𝛾)𝑣 = 0  

𝜎𝑖 + 𝛾𝑣 − 𝜇𝑟 = 0  

Dari sistem persamaan di atas diperoleh titik tetap bebas penyakit dan titik tetap endemik. 

2.1. Titik tetap bebas penyakit 

Titik tetap bebas penyakit merupakan suatu kondisi dimana tidak terdapat penyakit pada 

populasi tertentu. Titik tetap bebas penyakit diperoleh jika 𝑒 = 𝑖 = 𝑣 = 𝑟 = 0. Sehingga 

diperoleh titik tetap bebas penyakit sebagai berikut. 

𝐸0(𝑠, 𝑒, 𝑖, 𝑣, 𝑟) = (𝑠
0, 0,0,0,0) 

dimana 𝑠0 =
Π

𝜇
  

2.2. Titik tetap endemik 

Titik tetap endemik adalah suatu kondisi dimana masih terdapat  yang terinfeksi penyakit dari 

populasi tertentu. Sistem persaman (2) memberikan titik tetap endemik sebagai berikut. 

𝐸1(𝑠, 𝑒, 𝑖, 𝑣, 𝑟) = (𝑠
∗, 𝑒∗, 𝑖∗, 𝑣∗, 𝑟∗) 

dimana 

𝑠∗ =
(𝜇+𝛿+𝜎+𝜂)(𝜇+𝜋)

𝛽𝜋
  𝑣∗ =

𝜂(
Π𝜋

(𝜇+𝛿+𝜎+𝜂)(𝜇+𝜋)
−
𝜇

𝛽
)

𝛾+𝜇
 

𝑒∗ =
Π

𝜇+𝜋
−
𝜇(𝜇+𝛿+𝜎+𝜂)

𝛽𝜋
  𝑟∗ =

(𝜇𝜎+𝛾(𝜂+𝜎))(Π𝛽𝜋−𝜇(𝜇+𝛿+𝜎+𝜂)(𝜇+𝜎))

𝛽𝜇(𝛾+𝜇)(𝜇+𝛿+𝜎+𝜂)(𝜇+𝜎)
 

𝑖∗ =
Π𝜋

(𝜇+𝛿+𝜎+𝜂)(𝜇+𝜋)
−
𝜇

𝛽
   

3. Penentuan Matriks Jacobi 

Misalkan sistem persamaan (2) ditulis sebagai berikut. 
𝑑𝑠

𝑑𝑡
= 𝑓1(𝑠, 𝑒, 𝑖, 𝑣, 𝑟) = Π − 𝛽𝑠𝑖 − 𝜇𝑠  

𝑑𝑒

𝑑𝑡
= 𝑓2(𝑠, 𝑒, 𝑖, 𝑣, 𝑟) = 𝛽𝑠𝑖 − (𝜇 + 𝜋)𝑒  

𝑑𝑖

𝑑𝑡
= 𝑓3(𝑠, 𝑒, 𝑖, 𝑣, 𝑟) = 𝜋𝑒 − (𝜇 + 𝛿 + 𝜎 + 𝜂)𝑖  

𝑑𝑣

𝑑𝑡
= 𝑓4(𝑠, 𝑒, 𝑖, 𝑣, 𝑟) = 𝜂𝑖 − (𝜇 + 𝛾)𝑣  

𝑑𝑟

𝑑𝑡
= 𝑓5(𝑠, 𝑒, 𝑖, 𝑣, 𝑟) = 𝜎𝑖 + 𝛾𝑣 − 𝜇𝑟  

Dengan melakukan linearisasi sistem persamaan (3) di atas, diperoleh matriks Jacobi sebagai berikut. 

(3) 
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𝑱 =

(

 
 
 
 
 
 
 
 

𝝏𝒇𝟏
𝝏𝒔

𝝏𝒇𝟏
𝝏𝒆

𝝏𝒇𝟏
𝝏𝒊

𝝏𝒇𝟏
𝝏𝒗

𝝏𝒇𝟏
𝝏𝒓

𝝏𝒇𝟐
𝝏𝒔

𝝏𝒇𝟐
𝝏𝒆

𝝏𝒇𝟐
𝝏𝒊

𝝏𝒇𝟐
𝝏𝒗

𝝏𝒇𝟐
𝝏𝒓

𝝏𝒇𝟑
𝝏𝒔

𝝏𝒇𝟑
𝝏𝒆

𝝏𝒇𝟑
𝝏𝒊

𝝏𝒇𝟑
𝝏𝒗

𝝏𝒇𝟑
𝝏𝒓

𝝏𝒇𝟒
𝝏𝒔

𝝏𝒇𝟒
𝝏𝒆

𝝏𝒇𝟒
𝝏𝒊

𝝏𝒇𝟒
𝝏𝒗

𝝏𝒇𝟒
𝝏𝒓

𝝏𝒇𝟓
𝝏𝒔

𝝏𝒇𝟓
𝝏𝒆

𝝏𝒇𝟓
𝝏𝒊

𝝏𝒇𝟓
𝝏𝒗

𝝏𝒇𝟓
𝝏𝒓 )

 
 
 
 
 
 
 
 

 

𝑱 =

(

 
 

−(𝜷𝒊 + 𝝁) 𝟎 −𝜷𝒔 𝟎 𝟎
𝜷𝒊 −(𝝁 + 𝝅) 𝜷𝒔 𝟎 𝟎

𝟎 𝝅 −(𝝁 + 𝜹 + 𝝈 + 𝜼) 𝟎 𝟎
𝟎 𝟎 𝜼 −(𝜸 + 𝝁) 𝟎
𝟎 𝟎 𝝈 𝜸 −𝝁)

 
 

 

4. Penentuan Bilangan Reproduksi Dasar 

Bilangan reproduksi dasar yang dilambangkan dengan ℛ0 merupakan batas ambang terjadinya 

penyebaran penyakit. Bilangan reproduksi dasar ini digunakan sebagai ukuran untuk mengetahui 

apakah populasi terjadi endemik atau tidak. Untuk menentukan bilangan reproduksi dasar, digunakan 

pendekatan the next generation matrix. Sehingga dari sistem persamaan (2) diperoleh 

𝓕 = (
𝜷𝒔𝒊
𝟎
) dan 𝓥 = (

(𝝁 + 𝝅)𝒆
(𝝁 + 𝜹 + 𝝈 + 𝜼)𝒊 − 𝝅𝒆

) 

Selanjutnya masing-masing elemen matriks 𝓕 dan 𝓥 diturunkan terhadap 𝒆 dan 𝒊, sehingga 

diperoleh matriks. 

𝓕 = (𝟎 𝜷𝒔𝟎

𝟎 𝟎
) = (

𝟎
𝜷𝚷

𝝁

𝟎 𝟎
) dan 𝓥 = (

𝝁 + 𝝅 𝟎
−𝝅 𝝁 + 𝜹 + 𝝈 + 𝜼

) 

Kemudian perhitungan menggunakan pendekatan the next generation matrix yang diperoleh 

dengan menggunakan persamaan berikut. 

𝑮 = 𝓕𝓥−𝟏 
dengan menggunakan software Mathematica diperoleh matriks 𝐺 dan ℛ0 yang merupakan nilai eigen 

maksimum dari matriks 𝐺. 

𝐺 = (

𝜷𝚷π

𝜇(𝜇 + 𝜋)(𝝁 + 𝜹 + 𝝈 + 𝜼)

𝜷𝚷π

𝜇(𝝁 + 𝜹 + 𝝈 + 𝜼)
0 0

) 

dengan ℛ0 yang diperoleh sebagai berikut. 

ℛ0 =
𝜷𝚷π

𝜇(𝜇 + 𝜋)(𝝁 + 𝜹 + 𝝈 + 𝜼)
 

5. Analisis Kestabilan Titik Tetap Bebas Penyakit 

Pada tahap ini, kestabilan titik tetap bebas penyakit dianalisis berdasarkan kriteria yang ditentukan 

oleh bilangan reproduksi dasar yang telah diperoleh pada tahap sebelumnya, dengan merujuk pada 

Teorema 1. 

Teorema 1 

 Titik tetap bebas penyakit pada persamaan (2) bersifat stabil asimtotik lokal jika ℛ0 < 1 dan 

tidak stabil jika ℛ0 > 1. 

Bukti. 

Pelinearan pada titik tetap 𝑇0 akan menghasilkan matriks Jacobi sebagai berikut. 
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𝑱𝑻𝟎 =

(

 
 

𝑱𝟏𝟏 𝟎 𝑱𝟏𝟑
𝟎 𝑱𝟐𝟐 𝑱𝟐𝟑
𝟎
𝟎
𝟎

𝑱𝟑𝟐
𝟎
𝟎

𝑱𝟑𝟑
𝑱𝟒𝟑
𝑱𝟓𝟑

𝟎 𝟎
𝟎 𝟎
𝟎
𝑱𝟒𝟒
𝑱𝟓𝟒

𝟎
𝟎
𝑱𝟓𝟓)

 
 

 

dimana, 

𝑱𝟏𝟏 = −𝝁   𝑱𝟑𝟐 = 𝝅     𝑱𝟓𝟑 = 𝝈 

𝑱𝟏𝟑 = −𝜷𝒔
𝟎    𝑱𝟑𝟑 = −(𝝁 + 𝜹 + 𝝈 + 𝜼)  𝑱𝟓𝟒 = 𝜸 

𝑱𝟐𝟐 = −(𝝁 + 𝝅)   𝑱𝟒𝟑 = 𝜼     𝑱𝟓𝟓 = −𝝁  

𝑱𝟐𝟑 = 𝜷𝒔
𝟎    𝑱𝟒𝟒 = −(𝜸 + 𝝁)     

Penentuan nilai eigen dari 𝑱𝑻𝟎 dapat diperoleh dengan menggunakan persamaan karakteristik, yaitu 

|𝝀𝑰 − 𝑱𝑻𝟎| atau dapat ditulis sebagai berikut. 

|

|

𝝀 − 𝑱
𝟏𝟏

𝟎 𝑱
𝟏𝟑

𝟎 𝝀 − 𝑱𝟐𝟐 𝑱𝟐𝟑

𝟎
𝟎

𝟎

𝑱
𝟑𝟐

𝟎

𝟎

𝝀 − 𝑱
𝟑𝟑

𝑱𝟒𝟑
𝑱
𝟓𝟑

𝟎 𝟎

𝟎 𝟎
𝟎

𝝀 − 𝑱
𝟒𝟒

𝑱
𝟓𝟒

𝟎
𝟎

𝝀 − 𝑱
𝟓𝟓

|

|
 

Diperoleh persamaan sebagai berikut. 

(𝛌 − 𝑱𝟏𝟏)(𝛌 − 𝑱𝟒𝟒)(𝛌 − 𝑱𝟓𝟓)(𝝀
𝟐 + 𝑪𝟏𝝀 + 𝑪𝟐) = 𝟎 

dengan 

𝑪𝟏 = −(𝑱𝟐𝟐 + 𝑱𝟑𝟑) = (𝝁 + 𝝅) + (𝝁 + 𝜹 + 𝝈 + 𝜼)   

𝑪𝟐 = 𝑱𝟐𝟐 𝑱𝟑𝟑 − 𝑱𝟐𝟑 𝑱𝟑𝟐 = (𝝁 + 𝝅)(𝝁 + 𝜹 + 𝝈 + 𝜼) − 𝝅𝜷𝒔
𝟎  

Berdasarkan kriteria Routh–Hurwitz, titik tetap bebas penyakit 𝑇0 akan stabil jika dan hanya jika 

memenuhi syarat kestabilan 𝐶1 > 0 dan 𝐶2 > 0. 

Dari bentuk koefisien di atas, terlihat bahwa 𝐶1 > 0 selalu terpenuhi karena seluruh parameter model 

bernilai positif. Selanjutnya, syarat 𝐶2 > 0 bergantung pada nilai bilangan reproduksi dasar ℛ0 yang 

didefinisikan sebagai 

ℛ0 =
𝜋𝛽s0

(𝜇 + 𝜋)(𝜇 + 𝛿 + 𝜎 + 𝜂)
 

Apabila ℛ0 < 1, maka berlaku pertidaksamaan 

𝜋𝛽s0 < (𝜇 + 𝜋)(𝜇 + 𝛿 + 𝜎 + 𝜂) 
Dengan demikian, kedua syarat kestabilan dari kriteria Routh–Hurwitz, yaitu 𝐶1 > 0 dan 𝐶2 > 0, 

terpenuhi ketika ℛ0 < 1. Oleh karena itu, kedua nilai eigen yang diperoleh dari persamaan kuadrat 

memiliki bagian real negatif. Bersama dengan tiga nilai eigen lainnya yang juga bernilai negatif, 

dapat disimpulkan bahwa titik tetap bebas penyakit 𝑇0 stabil asimtotik lokal jika ℛ0 < 1 dan menjadi 

tidak stabil jika 𝑅0 > 1. 

6. Analisis Kestabilan Titik Tetap Endemik 

Teorema 2 

 Jika 𝓡𝟎 > 𝟏 maka titik tetap endemik persamaan (2) bersifat stabil asimtotik global. 

Bukti. 
Didefinisikan fungsi Lyapunov  

𝑉:ℝ5 → ℝ 

dengan formula sebagai berikut.  



M. Putra Sani Hattamurrahman, Samsul Ma’rif, Ahmad Junaedi 

Submitted: 01/10/2025; Revised: 01/11/2025; Accepted: 01/01/2026; Published: 31/01/2026  

8  Journal of Engineering Environment Energy and Science: Januari 2026 

𝑉(𝑠, 𝑒, 𝑖, 𝑞, 𝑟, 𝑣) =
𝑚1
2
(𝑠 − 𝑠∗)2 +

𝑚2
2
(𝑒 − 𝑒∗)2 +

𝑚3
2
(𝑖 − 𝑖∗)2 +

𝑚4
2
(𝑣 − 𝑣∗)2 +

𝑚5
2
(𝑟 − 𝑟∗)2 

dengan 𝑚1, 𝑚2,𝑚3,𝑚4,𝑚5, 𝑚6 > 0 sebagai faktor skala. 

Karena fungsi 𝑉 merupakan fungsi polinomial, maka 𝑉 kontinu, terdiferensialkan, dan positif 

definit, serta mencapai nilai minimum nol hanya di titik tetap endemik 𝑇1. 

Dengan mensubstitusikan sistem persamaan (2) maka 

𝑑𝑉

𝑑𝑡
= 𝑚1(𝑠 − 𝑠

∗)
𝑑𝑠

𝑑𝑡
 + 𝑚2(𝑒 − 𝑒

∗)
𝑑𝑒

𝑑𝑡
+ 𝑚3(𝑖 − 𝑖

∗)
𝑑𝑖

𝑑𝑡
+ 𝑚4(𝑣 − 𝑣

∗)
𝑑𝑣

𝑑𝑡
+ 𝑚5(𝑟 − 𝑟

∗)
𝑑𝑟

𝑑𝑡
 

Dengan mensubstitusikan sistem persamaan (1.1), diperoleh 

𝑑𝑉

𝑑𝑡
= 𝑚1(𝑠 − 𝑠

∗) (Π − 𝛽𝑠𝑖 − 𝜇𝑠) + 𝑚2(𝑒 − 𝑒
∗) (𝛽𝑠𝑖 − (𝜇 + 𝜋)𝑒) + 𝑚3(𝑖 − 𝑖

∗) (𝜋 𝑒

− (𝜇 + 𝛿 + 𝜎 + 𝜂)𝑖) + 𝑚4(𝑣 − 𝑣
∗) (𝜂𝑖 − (𝜇 + 𝛾)𝑣) + 𝑚5(𝑟 − 𝑟

∗) (𝜎𝑖 + 𝛾𝑣
− 𝜇𝑟) 

Karena 𝑇1 = (𝑠
∗, 𝑒∗, 𝑖∗, 𝑣∗, 𝑟∗) adalah titik tetap endemik, maka berlaku 

𝑑𝑠

𝑑𝑡
=
𝑑𝑒

𝑑𝑡
=
𝑑𝑖

𝑑𝑡
=
𝑑𝑣

𝑑𝑡
=
𝑑𝑟

𝑑𝑡
= 0 di 𝑇1. 

Dengan mengurangkan sistem pada keadaan umum dengan sistem pada titik tetap, diperoleh 

𝑑𝑉

𝑑𝑡
= −𝑚1(𝜇 + 𝛽𝑖)(𝑠 − 𝑠

∗)2 −𝑚2(𝜇 + 𝜋)(𝑒 − 𝑒
∗)2 −𝑚3(𝜇 + 𝛿 + 𝜎 + 𝜂)(𝑖 − 𝑖

∗)2

−𝑚4(𝜇 + 𝛾) + 𝑚5𝜇(𝑟 − 𝑟
∗)2 + 𝐶 

Dengan 𝐶 merupakan suku bilang yang dapat dikendalikan dengan pemilihan konstanta 𝑚𝑖. 
Misalkan 

𝐸𝑘 = {(𝑠, 𝑒, 𝑖, 𝑣, 𝑟) ∈ ℝ
5|𝑉(𝑠, 𝑒, 𝑖, 𝑣, 𝑟) ≤ 𝑘} 

Karena 𝑉 positif definit dan radially unbonded, maka 𝐸𝑘 merupakan himpunan terutup dan 
terbatas. 
Himpunan invarian terbesar dalam 

{(𝑠, 𝑒, 𝑖, 𝑣, 𝑟) ∈ 𝐸𝑘|𝑉̇ = 0} 
Hanya berisi titik tetap endemik 𝑇1 
Maka berdasarkan prinsip Invariansi Lasalle, titip tetap endemik 

𝑇1 = (𝑠
∗, 𝑒∗, 𝑖∗, 𝑣∗, 𝑟∗) 

Bersifat stabil asimtotik global. 

7. Simulasi Numerik 

Simulasi numerik pada penelitian ini menggunakan software Mathematica 13.2 untuk 

memperlihatkan gambaran dinamika penyebaran tuberkulosis di Kota Mataram, sekaligus 

mengevaluasi efektivitas vaksinasi yang diberikan oleh pemerintah. Simulasi numerik bertujuan 

untuk menampilkan grafik jumlah kasus aktif (I) dan jumlah populasi yang divaksinasi (V) serta 

menunjukkan bagaimana titik tetap dari masing-masing kompartemen berubah berdasarkan nilai 

parameter yang dimasukkan pada Tabel 2. 

Diketahui total populasi penduduk Kota Mataram Provinsi NTB menurut data BPS Kota Mataram 

pada tahun 2024 adalah 459.680 jiwa, yang dibagi ke dalam beberapa subpopulasi sesuai status 

epidemiologis. Nilai awal dari subpopulasi tersebut diperoleh dari data kasus TBC tahun 2024 yaitu 

2.087 kasus aktif. Populasi awal pada masing-masing kompartemen model SEIRV dinormalisasi, 

yaitu 𝑆(0) = 0.9954, 𝐸(0) = 0.002, 𝐼(0) = 0.00454, 𝑉(0) = 0,𝑅(0) = 0. Untuk nilai-nilai 

parameter ada yang memang sesuai dengan data Kota Mataram tapi ada juga dibuat asumsi karena 

keterbatasan data. Berikut adalah ringkasan nilai parameter yang disajikan dalam tabel. 
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Table 2. Nilai-nilai Parameter 

Simbol ℛ0 < 1 ℛ0 > 1 Sumber 

Π 0.0038 0.0038 BPS Kota Mataram 2024 

𝛽 0.30 0.30 Data Kasus Mataram 2024, Asumsi penularan tinggi 

𝜇 0.024 0.024 BPS Kota Mataram 2024 

𝜋 0.05 0.05 WHO 

𝛿 0.005 0.005 Asumsi 

𝜎 0.20 0.20 Asumsi 

𝜂 0.10 0 Asumsi 

𝛾 0.30 0.30 Asumsi 

 

  
Gambar 2. Populasi rentan (𝑠) dan terpapar (𝑒) tanpa vaksinasi dan dengan vaksinasi 

Berdasarkan gambar 2, pada skenario tanpa vaksinasi (𝜂 =  0), populasi rentan awal sebesar 0.85 

menurun secara perlahan karena sebagian individu terinfeksi. Grafik biru pudar menunjukkan 

penurunan moderat, seiring infeksi yang masih dapat menyebar (ℛ0  ≈  1.31 >  1). Dengan vaksinasi 

(𝜂 =  0.1), populasi rentan menurun lebih cepat karena sebagian individu dipindahkan ke kategori 

vaksinasi, garis biru terang menunjukkan jumlah individu rentan menjadi lebih sedikit. Dalam skenario 

ini,ℛ0 ≈  0.91 <  1, sehingga penyebaran infeksi terkontrol. Selanjutnya, populasi terpapar (exposed) 

meningkat dari 0.08 menuju puncak sekitar 0.15 − 0.2 tanpa vaksinasi, karena infeksi masih menular 

ke individu rentan. Grafik oranye pudar menunjukkan kenaikan yang cukup signifikan. Dengan 

vaksinasi, puncak terpapar lebih rendah dan terjadi lebih cepat, digambarkan oleh garis oranye terang. 

Hal ini konsisten dengan ℛ0 <  1 pada skenario vaksinasi, yang membatasi penyebaran infeksi. 

 
Gambar 3. Populasi terinfeksi (𝑖) tanpa vaksinasi dan dengan vaksinasi 

Berdasarkan gambar 3, jumlah individu terinfeksi meningkat pada awalnya dan mencapai puncak 

signifikan pada skenario tanpa vaksinasi (𝜂 =  0), terlihat dari garis merah pudar. Penurunan jumlah 
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kasus terjadi perlahan karena pemulihan dan kematian. Dalam skenario vaksinasi (𝜂 =  0.1), puncak 

infeksi lebih rendah dan menurun lebih cepat, ditandai garis merah terang, karena sebagian individu 

dipindahkan ke kategori vaksinasi atau recovered. Nilai ℛ0yang lebih kecil pada skenario ini (ℛ0 =
0.91 <  1) menjelaskan pengendalian infeksi. 

 

  
Gambar. Populasi yang divaksinasi dan sembuh tanpa vaksinasi dan dengan vaksinasi 

Berdasarkan gambar di atas, Tanpa vaksinasi (𝜂 =  0), populasi vaksin tetap nol, terlihat dari garis 

ungu pudar yang datar. Dengan vaksinasi, garis ungu terang meningkat secara bertahap, menunjukkan 

transisi individu dari terinfeksi ke kategori vaksinasi. Peningkatan populasi vaksin membantu 

menurunkan ℛ0 efektif, membatasi penyebaran infeksi. Selanjutnya, untuk populasi sembuh meningkat 

seiring waktu pada kedua skenario. Garis hijau pudar (tanpa vaksinasi) menunjukkan kenaikan lambat 

karena pemulihan dari infeksi saja. Garis hijau terang (dengan vaksinasi) meningkat lebih cepat karena 

kombinasi pemulihan alami dan efek vaksinasi, menghasilkan jumlah individu yang kebal lebih banyak. 

Dengan vaksinasi, ℛ0 <  1, sehingga infeksi cepat terkendali dan populasi recovered lebih tinggi. 

KESIMPULAN DAN SARAN 

Kesimpulan 

Berdasarkan hasil simulasi model SEIQRV dengan dua skenario tanpa vaksinasi (𝜂 = 0) dan dengan 

vaksinasi (𝜂 = 0.1) beberapa kesimpulan sebagai berikut. 

1. Populasi rentan menurun lebih cepat ketika vaksinasi diterapkan. Hal ini menunjukkan bahwa 

vaksinasi efektif mengurangi jumlah individu yang berpotensi terinfeksi. 

2. Jumlah terpapar dan terinfeksi jauh lebih rendah pada skenario vaksinasi dibandingkan tanpa 

vaksinasi. Simulasi menunjukkan bahwa puncak infeksi berkurang dan terjadi lebih cepat, 

menandakan penyebaran penyakit lebih cepat terkendali. 

3. Populasi yang divaksinasi meningkat secara signifikan pada skenario vaksinasi, sedangkan tanpa 

vaksinasi tetap nol. Hal ini memperlihatkan peran langsung vaksin dalam membangun kekebalan 

populasi. 

4. Populasi sembuh lebih tinggi pada skenario vaksinasi, menandakan bahwa kombinasi pemulihan 

alami dan vaksinasi mempercepat tercapainya kekebalan kelompok. 

5. Analisis bilangan reproduksi dasar ℛ0 menunjukkan bahwa, tanpa vaksinasi ℛ0 ≈ 1.31 > 1 yang 

memungkinkan infeksi terus menyebar, sedangkan dengan vaksinasi ℛ0 ≈ 0.91 > 1 sehingga 

penyebaran infeksi dapat dikendalikan. 

Secara keseluruhan, simulasi menunjukkan bahwa vaksinasi terbukti menurunkan jumlah kasus aktif, 

mempercepat pengendalian penyakit, dan meningkatkan proporsi individu kebal. 

Saran 

Berdasarkan hasil penelitian ini, beberapa rekomendasi kebijakan dapat diajukan: 

1. Implementasi program vaksinasi yang luas dan tepat waktu sangat penting untuk mengendalikan 

penyebaran penyakit TB. Simulasi menunjukkan bahwa peningkatan cakupan vaksinasi menurunkan 

bilangan reproduksi ℛ0 dan membatasi jumlah kasus aktif. 

2. Prioritas vaksinasi bagi populasi rentan dan kelompok berisiko tinggi dapat lebih efektif menurunkan 

ℛ0 dan mencegah lonjakan kasus, karena kelompok ini lebih mungkin terpapar dan menularkan 

infeksi. 
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3. Monitoring dan evaluasi efektivitas vaksinasi harus dilakukan secara berkala, sehingga strategi 

pengendalian dapat disesuaikan dengan kondisi nyata di lapangan. 

4. Kombinasi vaksinasi dengan langkah-langkah lain seperti isolasi kasus, edukasi masyarakat, dan 

peningkatan akses pengobatan dapat meningkatkan efektivitas pengendalian penyakit. 

5. Keterbatasan data TB di Kota Mataram perlu diperhatikan. Data yang tersedia sering kali tidak 

lengkap untuk seluruh kelompok usia, cakupan vaksinasi dewasa belum ada, dan tingkat pelaporan 

kasus mungkin belum mencerminkan jumlah sebenarnya. Oleh karena itu, hasil simulasi yang 

menggunakan asumsi tertentu (misalnya nilai 𝜂 =  0.1) bersifat hipotetis untuk mengevaluasi 

potensi kebijakan, dan interpretasi kebijakan harus dilakukan dengan mempertimbangkan 

keterbatasan ini. 
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