Mini Review: Potensi Bio-Nanokomposit Elektroda Ni/N Berbasis Limbah Ampas Tahu Untuk Microbial Fuel Cell (MFC)
DOI:
https://doi.org/10.31599/ndbgxy65Keywords:
Microbial Fuel Cell, elektroda karbon, ampas tahu, bionanokomposit, doping nitrogenAbstract
Kebutuhan energi bersih yang terus meningkat mendorong pengembangan teknologi Microbial Fuel Cell (MFC) sebagai solusi berkelanjutan. Artikel ini mengulas potensi penggunaan bio-nanokomposit berbasis limbah ampas tahu sebagai material elektroda dalam sistem MFC. Ampas tahu kaya akan lignoselulosa yang dapat dikonversi menjadi karbon aktif berpori, dan didoping nitrogen untuk meningkatkan konduktivitas serta aktivitas elektrokatalitik. Dengan pendekatan pelapisan pada substrat nikel menggunakan metode dip coating dan pirolisis, diperoleh elektroda Ni/N yang efisien dan berkelanjutan. Review ini menegaskan bahwa penggunaan ampas tahu tidak hanya meningkatkan performa MFC, tetapi juga berkontribusi terhadap pengelolaan limbah organik dan energi terbarukan.
Downloads
References
Ahmed, J., & Kim, S. (2024). Polyaniline nanofiber: An excellent anode material for microbial fuel cells. RSC Advances, 14(46), 34498–34503. https://doi.org/10.1039/D4RA03774J
Al Gazali, M. H., Susilo, F. I., & Zaeni, A. (2023). Performa Microbial Fuel Cell (MFC) bersubstrat Sedimen Teluk Kendari dalam Menghasilkan Tenaga Listrik dengan Variasi Jenis Elektroda. Arus Jurnal Sains Dan Teknologi, 1(1), 1–6. https://doi.org/10.57250/ajst.v1i1.264
Ali, A. K. M., Ali, M. E. A., Younes, A. A., Abo El Fadl, M. M., & Farag, A. B. (2021). Proton exchange membrane based on graphene oxide/polysulfone hybrid nano-composite for simultaneous generation of electricity and wastewater treatment. Journal of Hazardous Materials, 419, 126420. https://doi.org/10.1016/j.jhazmat.2021.126420
Attia, Y. A., Samer, M., Mohamed, M. S. M., Moustafa, E., Salah, M., & Abdelsalam, E. M. (2024). Nanocoating of microbial fuel cell electrodes for enhancing bioelectricity generation from wastewater. Biomass Conversion and Biorefinery, 14(1), 847–858. https://doi.org/10.1007/s13399-022-02321-7
Banerjee, A. C. (2022). eview on material and design of anode for microbial fuel cell. Energies, 15(6), 2283.
Bi, L., Ci, S., Cai, P., Li, H., & Wen, Z. (2018). One-step pyrolysis route to three dimensional nitrogen-doped porous carbon as anode materials for microbial fuel cells. Applied Surface Science, 427, 10–16. https://doi.org/10.1016/j.apsusc.2017.08.030
Chen, S. L. (2021). Enhancing microbial fuel cell performance through anode surface modification: A review. Journal of Power Sources,, 482, 228926.
Chen, M., Guo, W., Zhang, Y., Xiao, H., Lin, J., Rao, Y., Zhang, M., Cheng, F., & Lu, X. (2021). Activated nitrogen-doped ordered porous carbon as advanced anode for high-performance microbial fuel cells. Electrochimica Acta, 391, 138920. https://doi.org/10.1016/j.electacta.2021.138920
Delgado, Y., Tapia, N., Muñoz-Morales, M., Ramirez, Á., Llanos, J., Vargas, I., & Fernández-Morales, F. J. (2024). Effect of hydrochar-doping on the performance of carbon felt as anodic electrode in microbial fuel cells. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-33338-2
Ding, Y., Li, Y., Dai, Y., Han, X., Xing, B., Zhu, L., Qiu, K., & Wang, S. (2021). A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors. Energy, 216, 119227. https://doi.org/10.1016/j.energy.2020.119227
Ge, Z., & He, Z. (2015). An effective dipping method for coating activated carbon catalyst on the cathode electrodes of microbial fuel cells. RSC Advances, 5(46), 36933–36937. https://doi.org/10.1039/C5RA05543A
Gholami-Kermanshahi, M., Lee, M.-C., Lange, G., & Chang, S.-H. (2024). Effects of N2 plasma modification on the surface properties and electrochemical performance of Ni foam electrodes for double-chamber microbial fuel cells. Materials Advances, 5(13), 5554–5560. https://doi.org/10.1039/D4MA00153B
Guan, Y.-F., Zhang, F., Huang, B.-C., & Yu, H.-Q. (2019). Enhancing electricity generation of microbial fuel cell for wastewater treatment using nitrogen-doped carbon dots-supported carbon paper anode. Journal of Cleaner Production, 229, 412–419. https://doi.org/10.1016/j.jclepro.2019.05.040
Jing, X. C. (2025). Preparation of polypyrrole/titanium nitride composite modified biochar and its application research in microbial fuel cells. . RSC Advances, 15, 6089–6099.
Lee, D.-Y., An, G.-H., & Ahn, H.-J. (2017). High-surface-area tofu based activated porous carbon for electrical double-layer capacitors. Journal of Industrial and Engineering Chemistry, 52, 121–127. https://doi.org/10.1016/j.jiec.2017.03.032
Line Schultz Jensen, C. K. (2022). Biohydrigen Production in Microbial Electrolysis Cells Utilizing Organic Residue Freedstock. A review. Energies.
Liu, K., Ma, Z., Li, X., Qiu, Y., Liu, D., & Liu, S. (2023). N-Doped Carbon Nanowire-Modified Macroporous Carbon Foam Microbial Fuel Cell Anode: Enrichment of Exoelectrogens and Enhancement of Extracellular Electron Transfer. Materials, 17(1), 69. https://doi.org/10.3390/ma17010069
Mahmoodzadeh, F., Navidjouy, N., Alizadeh, S., & Rahimnejad, M. (2023). Investigation of microbial fuel cell performance based on the nickel thin film modified electrodes. Scientific Reports, 13(1), 20755. https://doi.org/10.1038/s41598-023-48290-3
Massaglia, G., Margaria, V., Fiorentin, M. R., Pasha, K., Sacco, A., Castellino, M., Chiodoni, A., Bianco, S., Pirri, F. C., & Quaglio, M. (2020). Nonwoven mats of N-doped carbon nanofibers as high-performing anodes in microbial fuel cells. Materials Today Energy, 16, 100385. https://doi.org/10.1016/j.mtener.2020.100385
Mitov, M. Y., Chorbadzhiyska, E. Y., Nalbandian, L., & Hubenova, Y. V. (2021). Synthesis and characterization of dip-coated CoB-, NiB- and CoNiB-carbon felt catalysts.
Naha, A., Debroy, R., Sharma, D., Shah, M. P., & Nath, S. (2023). Microbial fuel cell: A state-of-the-art and revolutionizing technology for efficient energy recovery. Cleaner and Circular Bioeconomy, 5, 100050. https://doi.org/10.1016/j.clcb.2023.100050
Nie, Z., Huang, Y., Ma, B., Qiu, X., Zhang, N., Xie, X., & Wu, Z. (2019). Nitrogen-doped Carbon with Modulated Surface Chemistry and Porous Structure by a Stepwise Biomass Activation Process towards Enhanced Electrochemical Lithium-Ion Storage. Scientific Reports, 9(1), 15032. https://doi.org/10.1038/s41598-019-50330-w
Nurohman, Y., Pratidhina, E., Sari, E. K., & Dwandaru, W. S. B. (2021). Carbon Dots Synthesized from Tofu Pulp for Liquid Tofu Waste Photo- degradation. . . P.
Pandit, D. D. (2018). Principles of Microbial Fuel Cell for the Power Generation. Springer, Cham., 21-41.
Rajesh, P. P., Noori, Md. T., & Ghangrekar, M. M. (2020). Improving Performance of Microbial Fuel Cell by Using Polyaniline-Coated Carbon–Felt Anode. Journal of Hazardous, Toxic, and Radioactive Waste, 24(3), 04020024. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000512
Rangel‐Sequeda, J. F., Loredo‐Cancino, M., Águeda‐Maté, V. I., & Martínez‐Vargas, D. X. (2024). Tailoring Nitrogen‐Doped Activated Carbons: Central Composite Design for Enhanced CO2 Adsorption. ChemistrySelect, 9(7), e202302805. https://doi.org/10.1002/slct.202302805
Santoro, C. A. (2017). Microbial fuel cells: From fundamentals to applications. Journal of Power Sources, 356, 225–244.
Tan, S., Wang, R., Dong, J., Zhang, K., Zhao, Z., Yin, Q., Liu, J., Yang, W., & Cheng, J. (2025). Hydrothermal-mediated in-situ nitrogen doping to prepare biochar for enhancing oxygen reduction reactions in microbial fuel cells. Bioresource Technology, 416, 131789. https://doi.org/10.1016/j.biortech.2024.131789
Wu, X., Qiao, Y., Guo, C., Shi, Z., & Li, C. M. (2020). Nitrogen doping to atomically match reaction sites in microbial fuel cells. Communications Chemistry, 3(1), 68. https://doi.org/10.1038/s42004-020-0316-z
Wu, & Zhao, Z. (2025). Enhancing the activity and stability of Fe/Co-based nitrogen-doped carbon with richer nitrogen and metal-N active sites towards oxygen reduction reactions. New Journal of Chemistry, 49(1), 124–131. https://doi.org/10.1039/D4NJ04380
Yulianto, A. R. D., Pangestu, B. D., Arrunata, D. Y., & Sriana, T. (2024). PERBANDINGAN KADAR BIOETANOL DARI HASIL HIDROLISIS LIMBAH BONGGOL JAGUNG DAN AMPAS TAHU.
Zhou, L. Z. (2014). Nitrogen-doped hierarchical porous carbon from waste biomass for high-performance supercapacitors. Electrochimica Acta, 130, 154–161.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Engineering Environtmental Energy and Science

This work is licensed under a Creative Commons Attribution 4.0 International License.