• Zana Zafira


Oil contamination from field drilling waste is a serious environmental problem worldwide. These oil contaminants must be removed to maintain biodiversity and ecological balance. Bioremediation is a soil cleaning technique that utilizes the metabolic ability of microorganisms to degrade soil contaminants. The use of native bacteria producing biosurfactants and utilization of hydrocarbons increases the effectiveness of bioremediation by making hydrocarbons bioavailable for degradation. Determination of bioremediation microorganisms affects the degradation process of petroleum. This is because each microorganism requires a specific substrate to reduce all the components of petroleum in the soil. A deeper approach is needed to obtain the effectiveness of microorganisms, both nonindigenous and indigenous microorganisms that are applied by researchers in degrading petroleum. However, not all available journal summaries provide a detailed explanation of the method and effectiveness of microorganisms in the bioremediation method. In this review, we will provide several microorganisms and methods used in bioremediation, including adsorptive bioremediation, biopile, in-situ bioremediation, landfarming, biostimulation, and composting in order to find the most effective method in the petroleum bioremediation process.


Download data is not yet available.


Asep, H. G. (2017). Telaah Mendalam tentang Bioremediasi : Teori dan Aplikasinya dalam Upaya Konservasi Tanah dan Air. 2017.

Beškoski, V. P. et al. (2011). Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil) - A field experiment Chemosphere, vol. 83, no. 1, pp. 34–40,doi:10.1016/j.chemosphere.2011.01.02.

Brown, D. M. et al. (2017). Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in Niger Delta soils. Sci. Total Environ., vol. 596–597, pp. 284–292, 2017, doi: 10.1016/j.scitotenv.2017.04.072.

Chaprão, M. J. et al. (2018). Formulation and application of a biosurfactant from Bacillus methylotrophicus as collector in the flotation of oily water in industrial environment J. Biotechnol., vol. 285, pp. 15–22, doi: 10.1016/j.jbiotec.2018.08.016.

Chikere, C.D., Tekere, M., & Adeleke, R. (2019). Enhanced microbial hydrocarbon biodegradation as stimulated during field-scale landfarming of crude oil-impacted soil. Sustain. Chem. Pharm., vol. 14, no. May, p. 100177, 2019, doi: 10.1016/j.scp.2019.100177.

Concetta, M., & Daugulis, A. J. (2013). Ex situ bioremediation of contaminated soils: An overview of conventional and innovative technologies. Crit. Rev. Environ. Sci. Technol., vol. 43, no. 20, pp. 2107–2139 doi: 10.1080/10643389.2012.672056.

Crooks, R. & Prentice, P. (2017). Extensive Investigation Into Field Based Responses to a Silica Fertiliser. Silicon, vol. 9, no. 2, pp. 301–304 doi: 10.1007/s12633-015-9379-3.

Das, A. J. & Kumar, R. (2019). Production of biosurfactant from agro-industrial waste by Bacillus safensis J2 and exploring its oil recovery efficiency and role in restoration of diesel contaminated soil. Environ. Technol. Innov., vol. 16, p. 100450, doi: 10.1016/j.eti.2019.100450.

Diplock, E. E., Mardlin, D. K., Killham, K. S., & Paton, G. I. (2010). The role of decision support for bioremediation strategies, exemplified by hydrocarbons for in site and ex situ procedures. Methods Mol. Biol., vol. 599, no. 1, pp. 201–215. doi: 10.1007/978-1-60761-439-5_13.

Edwin, T. & Mera, M. (2019). Bioremediasi dengan Metode Komposting untuk Biodegradasi Pestisida Pada Tanah. pp. 1009–1017 [Online]. Available:

F. Coulon et al. (2012). Effect of fertilizer formulation and bioaugmentation on biodegradation and leaching of crude oils and refined products in soils. Environ. Technol. (United Kingdom), vol. 33, no. 16, pp. 1879–1893,doi:10.1080/09593330.2011.650221

Gomez, F. & Sartaj, M. (2013). Field scale ex-situ bioremediation of petroleum contaminated soil under cold climate conditions. Int. Biodeterior. Biodegrad., vol. 85, pp. 375–382, 2013, doi: 10.1016/j.ibiod.2013.08.003

Grace, P. W., et al. (2011). Bioremediation of petroleum hydrocarbon contaminated soil: Effects of strategies and microbial community shift. Int. Biodeterior. Biodegrad., vol. 65, no. 8, pp. 1119–1127, 2011, doi: 10.1016/j.ibiod.2011.09.002.

Kumari, B., Singh, S. N., & and Singh, D. P. (2012). Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochem., vol. 47, no. 12, pp. 2463–2471, doi:10.1016/j.procbio.2012.10.010.

Krishnan, J. et al. (2017). Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions Int. Biodeterior. Biodegrad., vol. 119, pp. 16–27. doi: 10.1016/j.ibiod.2016.11.024.

Ma, S. C., Wang, J. L., Zhang, D. H., & Liu X.G. (2015). Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions. Appl. Surf. Sci., vol. 327, pp. 453–461, 2015, doi: 10.1016/j.apsusc.2014.12.006.

Marsandi, F., & Estuningsih, S. P. (2016) Asosiasi konsorsium bakteri Pseudomonas pseudoalcaligenes dan Micrococus luteus dengan lamtoro (Leucaena leucocephala (Lamk.) De Wit) dalam upaya meningkatkan bioremediasi minyak bumi. Proceeding Biol. Educ. Conf. Biol. Sci. Enviromental, Learn., vol. 13, no. 1, pp. 807–813, 2016.

Machado, T. S. et al. (2020). Effects of homemade biosurfactant from Bacillus methylotrophicus on bioremediation efficiency of a clay soil contaminated with diesel oil. Ecotoxicol. Environ. Saf., vol. 201, no. May, p. 110798, 2020, doi: 10.1016/j.ecoenv.2020.110798

Priadie, B. (2012). Teknik Bioremediasi Sebagai Alternatif Dalam Upaya Pengendalian Pencemaran Air. J. Ilmu Lingkung., vol. 10, no. 1, p. 38, 2012, doi: 10.14710/jil.10.1.38-48.

Rodrigues, E. M., Kalks, K. H. M., & Tótola, M.R. (2015). Prospect, isolation, and characterization of microorganisms for potential use in cases of oil bioremediation along the coast of Trindade Island, Brazil. J. Environ. Manage., vol. 156, pp. 15–22, doi:10.1016/j.jenvman.2015.03.016.

Sabaté, D. C., & Audisio, M. C. (2013). Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains. Microbiol. Res., vol. 168, no. 3, pp. 125–129. doi: 10.1016/j.micres.2012.11.004

Saum, L., Jiménez, M. D. & Crowley, D. (2018). Influence of biochar and compost on phytoremediation of oil-contaminated soil. Int. J. Phytoremediation, vol. 20, no. 1, pp. 54–60. doi:10.1080/15226514.2017.1337063.

Sayara, T., Sarrà, M. & Sánchez, A. (2010). Effects of compost stability and contaminant concentration on the bioremediation of PAHs-contaminated soil through composting. J. Hazard. Mater., vol. 179, no. 1–3, pp. 999–1006, doi: 10.1016/j.jhazmat.2010.03.104.

Seydlová, G., et al. (2013). Surfactin production enhances the level of cardiolipin in the cytoplasmic membrane of Bacillus subtilis. Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 11, pp. 2370–2378, doi:10.1016/j.bbamem.2013.06.032.

Sopiah, N. (2012). Uji coba kinerja bakteri. J. Teknol. Lingkung., vol. 13, no. 2, pp. 131–140.

Vasilyeva, G., Kondrashina, V., Strijakova, E., & Ortega-Calvo, J. J. (2020). Adsorptive bioremediation of soil highly contaminated with crude oil. Sci. Total Environ., vol. 706, p. 135739, doi: 10.1016/j.scitotenv.2019.135739

Zam, S. I. (2010). Bioremediasi Tanah Yang Tercemar Limbah Penghilang MInyaj Bumi Secara In Vitro Pada Konsentrasi Ph Berbeda ( In vitro Bioremediation of Dirtied Soil by Oil Refinery Waste in different pH Concentration) Syukria Ikhsan Zam. J. Agroteknologi, vol. 1, pp. 1–7, 2011.



— Updated on 2021-10-31