Prediksi Data Time Series Saham Bank BRI Dengan Mesin Belajar LSTM (Long ShortTerm Memory)
DOI:
https://doi.org/10.31599/jiforty.v1i1.133Keywords:
long short-term memory, machine learning, epoch, root mean square error, mean square errorAbstract
Abstract
This study aims to measure the accuracy in predicting time series data using the LSTM (Long Short-Term Memory) machine learning method, and determine the number of epochs needed to produce a small RMSE (Root Mean Square Error) value. The result of this research is a high level of variation in RMSE value to the number of epochs needed in the data processing. This variation is quite difficult to obtain the right epoch value. By doing an iteration of the LSTM process on the number of different epochs (visualized in the graph), then the number of epochs with a minimum RMSE value will be easier to obtain. From the research of BBRI's stock data prediction, a good RMSE value was obtained (RMSE = 227.470333244533).
Keywords: long short-term memory, machine learning, epoch, root mean square error, mean square error.
Abstrak
Penelitian ini bertujuan untuk mengukur ketelitian dalam memprediksi data time series menggunakan metode mesin belajar LSTM (Long Short-Term Memory), serta menentukan banyaknya epoch yang diperlukan untuk menghasilkan nilai RMSE (Root Mean Square Error) yang kecil. Hasil dari penelitian ini adalah tingkat variasi yang tinggi nilai rmse terhdap jumlah epoch yang diperlukan dalam proses pengolahan data. Variasi ini cukup menyulitkan untuk memperoleh nilai epoch yang tepat. Dengan melakukan iterasi dari proses LSTM terhadap jumlah epoch yang berbeda (di visualisasikan dalam grafik), maka jumlah epoch dengan nilai RMSE minimal akan lebih mudah diperoleh. Dari penelitan prediksi data saham BBRI diperoleh nilai RMSE yang cukup baik yaitu 227,470333244533.
Kata kunci: long short-term memory, machine learning, epoch, root mean square error, mean square error.
Downloads
Downloads
Published
Issue
Section
License
Please read and understand the copyright terms for submissions to this journal.
Copyright Notice
The Jurnal Keamanan Nasional is under the Creative Commons Attribution 4.0 International (CC-BY 4.0) License, according to which:
1) Authors retain copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Attribution (CC-BY 4.0) that allows the sharing of articles published with the acknowledgement of authorship and the initial publication in this journal.
2) The authors are authorized to make additional contracts separately for distribution of the version of the work published in this journal (for example, publication in an institutional repository or as a chapter of the book), as long as there is recognition of authorship and initial publication in this journal.
3) Authors are authorized and encouraged to publish and distribute their work online (for example, in institutional repositories or on their personal pages) at any time before or during the editorial process, as it increases the impact and reference of the published work.
						


2.jpg)


_-_Copy1.jpg)