Implementasi Big Data Analytical Untuk Perguruan Tinggi Menggunakan Machine Learning


  • Rakhmat Purnomo Universitas Bhayangkara Jakarta Raya
  • Wowon Priatna
  • Tri Dharma Putra



The dynamics of higher education are changing and emphasize the need to adapt quickly. Higher education is under the supervision of accreditation agencies, governments and other stakeholders to seek new ways to improve and monitor student success and other institutional policies. Many agencies fail to make efficient use of the large amounts of available data. With the use of big data analytics in higher education, it can be obtained more insight into students, academics, and the process in higher education so that it supports predictive analysis and improves decision making. The purpose of this research is to implement big data analytical to increase the decision making of the competent party. This research begins with the identification of process data based on analytical learning, academic and process in the campus environment. The data used in this study is a public dataset from UCI machine learning, from the 33 available varibales, 4 varibales are used to measure student performance. Big data analysis in this study uses spark apace as a library to operate pyspark so that python can process big data analysis. The data already in the master slave is grouped using k-mean clustering to get the best performing student group. The results of this study succeeded in grouping students into 5 clusters, cluster 1 including the best student performance and cluster 5 including the lowest student performance


Download data is not yet available.


How to Cite

Purnomo, R., Wowon Priatna, & Tri Dharma Putra. (2021). Implementasi Big Data Analytical Untuk Perguruan Tinggi Menggunakan Machine Learning. Journal of Informatic and Information Security, 2(1).