A Breakthrough in Viral Pneumonia Detection: Unveiling Insights with ResNet-152
DOI:
https://doi.org/10.31599/1zcjsb83Keywords:
viral pneumonia, prediction, ResNet-152.Abstract
Viral pneumonia is one of the most serious health issues. The key problem in providing early detection and rapid mitigation through the use of chest X-ray imaging has become the ability to identify accurately. The ResNet-152 convolutional neural network approach will be used in this study to predict viral pneumonia. The input dataset was obtained from Kaggle.com. The accuracy findings from this investigation obtained a substantial value, namely 0.99, indicating that the model used performed admirably. The model used can efficiently distinguish between the viral pneumonia dataset and other datasets. It is intended that the findings of this study will be used to inform early decisions in related medical sectors.
Downloads
Downloads
Published
Issue
Section
License
Please read and understand the copyright terms for submissions to this journal.
Copyright Notice
TheĀ Jurnal Keamanan NasionalĀ is under the Creative Commons Attribution 4.0 International (CC-BY 4.0) License, according to which:
1) Authors retain copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Attribution (CC-BY 4.0) that allows the sharing of articles published with the acknowledgement of authorship and the initial publication in this journal.
2) The authors are authorized to make additional contracts separately for distribution of the version of the work published in this journal (for example, publication in an institutional repository or as a chapter of the book), as long as there is recognition of authorship and initial publication in this journal.
3) Authors are authorized and encouraged to publish and distribute their work online (for example, in institutional repositories or on their personal pages) at any time before or during the editorial process, as it increases the impact and reference of the published work.