Diagnosa COVID-19 Chest X-Ray Menggunakan Arsitektur Inception Resnet
DOI:
https://doi.org/10.31599/abbs9m42Keywords:
Inception Resnet V2, Convolution Neral Network, Deep Learning, COVID-19, Chest-XrayAbstract
The availability of medical aids in adequate quantities is very much needed to assist the work of the medical staff in dealing with the very large number of Covid patients. Artificial Intelligence (AI) with the Deep Learning (DL) method, especially the Convolution Neural Network (CNN), is able to diagnose Chest X-ray images generated by the Computer Tomography Scanner (C.T. Scan) against certain diseases (Covid). Inception Resnet Version 2 architecture was used in this study to train a dataset of 4000 images, consisting of 4 classifications namely covid, normal, lung opacity and viral pneumonia with 1,000 images each. The results of the study with 50 epoch training obtained very good values for the accuracy of training and validation of 95.5% and 91.8%, respectively. The test with 4000 image dataset obtained 98% accuracy testing, with the precision of each class being Covid (99%), Lung_Opacity (97%), Normal (99%) and Viral pneumonia (99%).
Downloads
Downloads
Published
Issue
Section
License
Please read and understand the copyright terms for submissions to this journal.
Copyright Notice
The Jurnal Keamanan Nasional is under the Creative Commons Attribution 4.0 International (CC-BY 4.0) License, according to which:
1) Authors retain copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Attribution (CC-BY 4.0) that allows the sharing of articles published with the acknowledgement of authorship and the initial publication in this journal.
2) The authors are authorized to make additional contracts separately for distribution of the version of the work published in this journal (for example, publication in an institutional repository or as a chapter of the book), as long as there is recognition of authorship and initial publication in this journal.
3) Authors are authorized and encouraged to publish and distribute their work online (for example, in institutional repositories or on their personal pages) at any time before or during the editorial process, as it increases the impact and reference of the published work.
 
						


2.jpg)


_-_Copy1.jpg)



