Sistem Penilaian Kinerja Karyawan PT Bank Syariah Indonesia Berbasis Website Menggunakan Algoritma Naive Bayes

Authors

  • Khoirul Azmi Mutawalli Universitas Bhayangkara Jakarta Raya
  • Adi Muhajirin Universitas Bhayangkara Jakarta Raya
  • Rafika Sari Universitas Bhayangkara Jakarta Raya

DOI:

https://doi.org/10.31599/621br528

Keywords:

Performance appraisal system, nave Bayes classifier, website

Abstract

This study focuses on developing an employee performance appraisal system that aims to evaluate employee performance at PT Bank Syariah Indonesia within the criteria set by the company aimed at classifying employee appraisals that can assist companies in classifying good or bad performance on the value of the employee. This method uses the nave Bayes classifier, a website-based employee performance appraisal system. The system will take the value of the criteria that have been set by the company such as: the value of neatness, loyalty, compliance, discipline, productivity and thoroughness. Based on the results of taking the value of these criteria, the system will issue an output that decides the classification of employees is classified as good or not good. Thus the system will determine whether the employee is good or bad.

Downloads

Download data is not yet available.

References

Dewi, P. S., Sastradipraja, C. K., & Gustian, D. (2021). Sistem Pendukung Keputusan Kenaikan Jabatan Menggunakan Metode Algoritma Naïve Bayes Classifier. Jurnal Teknologi Dan Informasi, 11(1), 66–80. https://doi.org/10.34010/jati.v11i1.3593

Hasanah, F. N., & Untari, R. S. (2020). Buku Ajar Rekayasa Perangkat Lunak - Google Books. https://www.google.co.id/books/edition/Buku_Ajar_Rekayasa_Perangkat_Lunak/1LVKEAAAQBAJ?hl=en&gbpv=1&dq=Metode+Waterfall+pressman+2021&pg=PT50&printsec=frontcover

Kotabumi, C. C., Redaksi, P., Efendi, D. M., Riskiono, S. D., Wahyu, I., Bestari, M., Mauladi, K. F., Ardhy, F., & Utara, L. (n.d.). SISTEM PENILAIAN KINERJA KARYAWAN DENGAN MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING (SAW).

Marudut, V., Siregar, M., Komputer, T., Indonesia, P. B., Utara, S., Cafe, E. S., Cafe, S., & Cafe, E. S. (2018a).

Marudut, V., Siregar, M., Komputer, T., Indonesia, P. B., Utara, S., Cafe, E. S., Cafe, S., & Cafe, E. S. (2018b). Novendri. (2019). Pengertian Web. Lentera Dumai, 10(2), 46–57.

Pangestuti, T. D., Anggraeny, F. T., & Mandyartha, E. P. (2020). Rancang Bangun Sistem Pendukung Keputusan Penerimaan Karyawan Baru Menggunakan Metode Naive Bayes Classifier (Studi …. Jurnal Informatika Dan Sistem Informasi (JIFoSI), 1(3), 1072–1080. http://jifosi.upnjatim.ac.id/index.php/jifosi/article/view/236

Rahayu, S., & RMS, A. S. (2018). Penerapan Metode Naive Bayes Dalam Pemilihan Kualitas Jenis Rumput Taman CV. Rumput Kita Landscape. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 9(2), 162–171. https://doi.org/10.31849/digitalzone.v9i2.1942

Saleh, A., & Nasari, F. (2018). Penggunaan Teknik Unsupervised Discretization pada Metode Naive Bayes dalam Menentukan Jurusan Siswa Madrasah Aliyah. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(3), 353. https://doi.org/10.25126/jtiik.201853705

Senika, A., & Iskandar, D. (2022). Implementasi Metode Naïve Bayes Dalam Penilaian Kinerja Sales Marketing Pada PT . Pachira Distrinusa. 6, 701–709. https://doi.org/10.30865/mib.v6i1.3331

Downloads

Published

2024-05-14