Implementasi Deep Learning Untuk Rekomendasi Aplikasi E-learning Yang Tepat Untuk Pembelajaran jarak jauh
DOI:
https://doi.org/10.31599/jki.v21i3.521Kata Kunci:
E-learning, online teaching, Deep Learning, Artificial Neural Network, PythonAbstrak
Tujuan penelitian ini adalah untuk rekomendasi aplikasi e-learning yang tepat untuk digunakan dalam pembelajaran online dilingkungan perguruan tinggi. Banyaknya platform e-learning yang digunakan oleh dosen-dosen untuk kegiatan kuliah online berakibat mahasiswa dalam belajar terpaksa menggunakan beberapa aplikasi e-learning tergantung dari dosen yang mengajar mata kuliah yang diambil, untuk pihak universitas juga akhirnya memberikan kebijakan dosen-dosen untuk laporan pembelajaran jarak setiap selesai memberikan materi. Dalam penelitian ini metode pengumpulan data dimulai dengan mengambil data dari fakultas untuk mengetahui aplikasi e-learning yang banyak digunakan oleh para dosen, selanjutnya membagikan kuisioner kepada mahasiswa dan dosen yang menggunakan aplikasi e-learning untuk mengukur aplikasi e-leaning tersebut dengan kriteria e-learning yang sesuai. Data kemudian diolah dijadikan dataset. Algoritma yang digunakan dalam implementasi deep learning ini adalah Artificial Neural Network (ANN). Untuk implementasi ANN ditentukan 27 variable yang didapat dari kriteria e-learning dan 1 target, dalam tahapan ANN ini menggunakan prediksi dengan klasifikasi berdasarkan preposesing,training, learning, evaluation dan prediction dengan menggunakan pemogramn python. Hasilnya yang didapat penelitian ini aplikasi moodle mendapatkan nilai tertinggi dengan akurasi 97% untuk dijadikan rekomendasi aplikasi e-learning yang tepat digunakan untuk perguruan tinggi dalam melakukan perkuliahan online
Unduhan
Referensi
Anstey, L. M., & Watson, G. P. L. (2018). A Rubric for Evaluating E-Learning Tools in Higher Education.
Baidawi, T., & Sandi, M. (2013). Desktop Computing Dengan Metode Eyeos. Seminar Nasional Inovasi Dan Teknologi (SNIT) 2013 IMPLEMENTASI, (May), A-221.
Bühler, C., & Fisseler, B. (2007). Accessible E-Learning and Educational Technology - Extending Learning Opportunities for People with Disabilities. Conference ICL2007, September 26 -28, 2007, (August 2014), 11 pages. Retrieved from https://hal.archives-ouvertes.fr/hal-00257138/
Chauhan, K., & Ram, S. (2018). Image Classification with Deep Learning and Comparison between Different Convolutional Neural Network Structures using Tensorflow and Keras. International Journal of Advance Engineering and Research Development, 5(02), 533–538.
Chen, Y., & He, W. (2013). Security risks and protection in online learning: A survey. International Review of Research in Open and Distance Learning, 14(5), 108–127. https://doi.org/10.19173/irrodl.v14i5.1632
Chou, T.-C. R. (2014). A Scale of University Students’ Attitudes toward e-Learning on the Moodle System. International Journal of Online Pedagogy and Course Design, 4(3), 49–65. https://doi.org/10.4018/ijopcd.2014070104
Dodun, O., Panaite, E., Seghedin, N., Nagîţ, G., Duşa, P., Neştian, G., & Slətineanu, L. (2015). Analysis of an E-learning Platform use by Means of the Axiomatic Design. Procedia CIRP, 34, 244–249. https://doi.org/10.1016/j.procir.2015.07.059
Fakhfakh, R., Ben, A., & Ben, C. (2017). Deep Learning-Based Recommendation: Current Issues and Challenges. International Journal of Advanced Computer Science and Applications, 8(12). https://doi.org/10.14569/ijacsa.2017.081209
Gregory, S., & Bannister-Tyrrell, M. (2017). Digital learner presence and online teaching tools: higher cognitive requirements of online learners for effective learning. Research and Practice in Technology Enhanced Learning, 12(1). https://doi.org/10.1186/s41039-017-0059-3
Kisworo, M. W. (2016). Implementing open source platform for education quality enhancement in primary education: Indonesia experience. Turkish Online Journal of Educational Technology, 2016(july), 295–301.
Kumar Basak, S., Wotto, M., & Bélanger, P. (2018). E-learning, M-learning and D-learning: Conceptual definition and comparative analysis. E-Learning and Digital Media, 15(4), 191–216. https://doi.org/10.1177/2042753018785180
Lee, S. M. (2014). The relationships between higher order thinking skills, cognitive density, and social presence in online learning. Internet and Higher Education, 21, 41–52. https://doi.org/10.1016/j.iheduc.2013.12.002
Liu, J., & WU, C. (2017). Deep Learning Based Recommendation: A Survey. Lecture Notes in Electrical Engineering, 2(March 2017), 467–475. https://doi.org/10.1007/978-981-10-4154-9
Maeda, M., & Ono, Y. (2019). Diffusion of lesson study as an educational innovation. International Journal of Comparative Education and Development, 21(1), 46–60. https://doi.org/10.1108/IJCED-10-2018-0044
Moubayed, A., Injadat, M., Nassif, A. B., Lutfiyya, H., & Shami, A. (2018). E-Learning: Challenges and Research Opportunities Using Machine Learning Data Analytics. IEEE Access, 6, 39117–39138. https://doi.org/10.1109/ACCESS.2018.2851790
Muniasamy, A., & Alasiry, A. (2020). Deep learning: The impact on future eLearning. International Journal of Emerging Technologies in Learning, 15(1), 188–199. https://doi.org/10.3991/IJET.V15I01.11435
Nawaz, A., & Zubair Khan, M. (2012). Issues of Technical Support for e-Learning Systems in Higher Education Institutions. International Journal of Modern Education and Computer Science, 4(2), 38–44. https://doi.org/10.5815/ijmecs.2012.02.06
Phipps, L., & Kelly, B. (2006). Holistic approaches to e-learning accessibility. Alt-J, 14(1), 69–78. https://doi.org/10.1080/09687760500479860
Prof. Indira, D., & MS. Sakhi. (2017). Online learning. International Education & Research Journal [IERJ], 3(8), 32–34. https://doi.org/10.4324/9780429355097-7
Rapanta, C., Botturi, L., Goodyear, P., Guàrdia, L., & Koole, M. (2020). Online University Teaching During and After the Covid-19 Crisis: Refocusing Teacher Presence and Learning Activity. Postdigital Science and Education, 2(3), 923–945. https://doi.org/10.1007/s42438-020-00155-y
Raschka, S. (2015). Python Machine Learning. Birmingham: Packt Publishing Limited.
Reza, R. (2017). Penerapan Jaringan Saraf Tiruan Jenis Deep Learning Untuk Sistem Informasi Kesehatan Jembatan. Universitas Bina Nusantara.
Richardson, J. C., Koehler, A. A., Besser, E. D., Caskurlu, S., Lim, J. E., & Mueller, C. M. (2015). Conceptualizing and investigating instructor presence in online learning environments. International Review of Research in Open and Distance Learning, 16(3), 256–297. https://doi.org/10.19173/irrodl.v16i3.2123
Shiddieqy, H. A., Hariadi, F. I., & Adiono, T. (2017). Implementation of deep-learning based image classification on single board computer. 2017 International Symposium on Electronics and Smart Devices, ISESD 2017, 2018-Janua, 133–137. https://doi.org/10.1109/ISESD.2017.8253319