BIOREMEDIASI SEBAGAI ALTERNATIF PENGEMBALIAN FUNGSI TANAH YANG TERCEMAR MINYAK BUMI

Authors

  • zana Zafira Universitas Negeri Semarang

DOI:

https://doi.org/10.31599/qgf9re58

Keywords:

bioremediation, TPH, effectiveness of microorganism

Abstract

Oil contamination from field drilling waste is a
serious environmental problem worldwide.
These oil contaminants must be removed to
maintain biodiversity and ecological balance.
Bioremediation is a soil cleaning technique that
utilizes the metabolic ability of microorganisms
to degrade soil contaminants. The use of native
bacteria producing biosurfactants and
utilization of hydrocarbons increases the
effectiveness of bioremediation by making
hydrocarbons bioavailable for degradation.
Determination 
of 
bioremediation 
microorganisms affects the degradation
process of petroleum. This is because each
microorganism requires a specific substrate to
reduce all the components of petroleum in the
soil. A deeper approach is needed to obtain the
effectiveness of microorganisms, both
nonindigenous and indigenous microorganisms
that are applied by researchers in degrading
petroleum. However, not all available journal
summaries provide a detailed explanation of
the method and effectiveness 
of 
microorganisms in the bioremediation method.
In this review, we will provide several
microorganisms and methods used in
bioremediation, 
including 
adsorptive 
bioremediation, biopile, in-situ bioremediation,
landfarming, biostimulation, and composting in
order to find the most effective method in the
petroleum bioremediation process. 

Downloads

Download data is not yet available.

References

Asep, H. G. (2017). Telaah Mendalam tentang

Bioremediasi : Teori dan Aplikasinya

dalam Upaya Konservasi Tanah dan

Air. 2017.

Beškoski, V. P. et al. (2011). Ex situ

bioremediation of a soil contaminated

by mazut (heavy residual fuel oil) - A

field experiment Chemosphere, vol. 83,

no.

,

pp.

,doi:10.1016/j.chemosphere.2011.01.

Brown, D. M. et al. (2017). Comparison of

landfarming amendments to improve

bioremediation

of

petroleum

hydrocarbons in Niger Delta soils. Sci.

Total Environ., vol. 596–597, pp. 284–

,

,

doi:

1016/j.scitotenv.2017.04.072.

Chaprão, M. J. et al. (2018). Formulation and

application of a biosurfactant from

Bacillus methylotrophicus as collector

in the flotation of oily water in industrial

environment J. Biotechnol., vol. 285,

pp.

–22,

doi:

1016/j.jbiotec.2018.08.016.

Chikere, C.D., Tekere, M., & Adeleke, R.

(2019).

Enhanced microbial

hydrocarbon

biodegradation

as

stimulated

during

field-scale

landfarming of crude oil-impacted soil.

Sustain. Chem. Pharm., vol. 14, no.

May, p. 100177, 2019, doi:

1016/j.scp.2019.100177.

Concetta, M., & Daugulis, A. J. (2013). Ex situ

bioremediation of contaminated soils:

An overview of conventional and

innovative technologies. Crit. Rev.

Environ. Sci. Technol., vol. 43, no. 20,

pp.

–2139

doi:

1080/10643389.2012.672056.

Crooks, R. & Prentice, P. (2017). Extensive

Investigation Into Field Based

Responses to a Silica Fertiliser. Silicon,

vol. 9, no. 2, pp. 301–304 doi:

1007/s12633-015-9379-3.

Das, A. J. & Kumar, R. (2019). Production of

biosurfactant from agro-industrial waste

by Bacillus safensis J2 and exploring its

oil recovery efficiency and role in

restoration of diesel contaminated soil.

Environ. Technol. Innov., vol. 16, p.

, doi: 10.1016/j.eti.2019.100450.

Diplock, E. E., Mardlin, D. K., Killham, K. S.,

& Paton, G. I. (2010). The role of

decision support for bioremediation

strategies, exemplified by hydrocarbons

for in site and ex situ procedures.

Methods Mol. Biol., vol. 599, no. 1, pp.

–215. doi: 10.1007/978-1-60761439-5_13.

Edwin,

T. & Mera, M. (2019). Bioremediasi

dengan Metode Komposting untuk

Biodegradasi Pestisida Pada Tanah. pp.

–1017

[Online]. Available:

https://conference.ft.unand.ac.id/index.

php/ace/Ace2019/paper/viewPDFInters

titial/1134/371.

F. Coulon et al. (2012). Effect of fertilizer

formulation and bioaugmentation on

biodegradation and leaching of crude

oils and refined products in soils.

Environ. Technol. (United Kingdom),

vol. 33, no. 16, pp. 1879–

,doi:10.1080/09593330.2011.6502

Gomez, F. & Sartaj, M. (2013). Field scale exsitu

bioremediation of petroleum

contaminated soil under cold climate

conditions. Int. Biodeterior. Biodegrad.,

vol. 85, pp. 375–382, 2013, doi:

1016/j.ibiod.2013.08.003

Grace, P. W., et al. (2011). Bioremediation of

petroleum hydrocarbon contaminated

soil: Effects of strategies and microbial

community shift. Int. Biodeterior.

Biodegrad., vol. 65, no. 8, pp. 1119–

,

,

doi:

1016/j.ibiod.2011.09.002.

Kumari, B., Singh, S. N., & and Singh, D. P.

(2012). Characterization of

two

biosurfactant producing strains in crude

oil degradation. Process Biochem., vol.

, no. 12, pp. 2463–2471,

doi:10.1016/j.procbio.2012.10.010.

Krishnan, J. et al. (2017). Effect of pH,

inoculum dose and initial dye

concentration on the removal of azo dye

mixture under aerobic conditions Int.

Biodeterior. Biodegrad., vol. 119, pp.

–27.

doi:

1016/j.ibiod.2016.11.024.

Ma, S. C., Wang, J. L., Zhang, D. H., & Liu

X.G. (2015). Detection analysis of

surface hydroxyl active sites and

simulation calculation of the surface

dissociation constants of aqueous

diatomite suspensions. Appl. Surf. Sci.,

vol. 327, pp. 453–461, 2015, doi:

1016/j.apsusc.2014.12.006.

Marsandi, F., & Estuningsih, S. P. (2016)

Asosiasi

konsorsium

bakteri

Pseudomonas pseudoalcaligenes dan

Micrococus luteus dengan lamtoro

(Leucaena leucocephala (Lamk.) De

Wit) dalam upaya meningkatkan

bioremediasi minyak bumi. Proceeding

Biol. Educ. Conf. Biol. Sci.

Enviromental, Learn., vol. 13, no. 1, pp.

–813, 2016.

Machado, T. S. et al. (2020). Effects of

homemade biosurfactant from Bacillus

methylotrophicus on bioremediation

efficiency of a clay soil contaminated

with diesel oil. Ecotoxicol. Environ.

Saf., vol. 201, no. May, p. 110798, 2020,

doi: 10.1016/j.ecoenv.2020.110798

Priadie, B. (2012). Teknik Bioremediasi

Sebagai Alternatif Dalam Upaya

Pengendalian Pencemaran Air. J. Ilmu

Lingkung., vol. 10, no. 1, p. 38, 2012,

doi: 10.14710/jil.10.1.38-48.

Rodrigues, E. M., Kalks, K. H. M., & Tótola,

M.R. (2015). Prospect, isolation, and

characterization of microorganisms for

potential use in cases of oil

bioremediation along the coast of

Trindade Island, Brazil. J. Environ.

Manage., vol. 156, pp. 15–22,

doi:10.1016/j.jenvman.2015.03.016.

Sabaté, D. C., & Audisio, M. C. (2013).

Inhibitory activity of surfactin,

produced by different Bacillus subtilis

subsp. subtilis strains, against Listeria

monocytogenes

sensitive

and

bacteriocin-resistant strains. Microbiol.

Res., vol. 168, no. 3, pp. 125–129. doi:

1016/j.micres.2012.11.004

Saum, L., Jiménez, M. D. & Crowley, D.

(2018). Influence of biochar and

compost on phytoremediation of oilcontaminated

soil.

Int.

J.

Phytoremediation, vol. 20, no. 1, pp.

–60.

Downloads

Published

2024-05-14